Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 

Advanced Topics of Optoelectronics - Einzelansicht

  • Funktionen:
Veranstaltungsart Vorlesung Langtext
Veranstaltungsnummer 206734 Kurztext
Semester WS 2022 SWS 2
Teilnehmer 1. Platzvergabe 20 Max. Teilnehmer 2. Platzvergabe 24
Rhythmus Jedes 2. Semester Studienjahr
Credits für IB und SPZ
Sprache Englisch
Belegungsfrist Zur Zeit keine Belegung möglich

Termine Gruppe: 0-Gruppe iCalendar Export für Outlook
  Tag Zeit Rhythmus Dauer Raum Lehrperson (Zuständigkeit) Status Bemerkung fällt aus am Max. Teilnehmer 2. Platzvergabe
Einzeltermine anzeigen Mo. 12:00 bis 14:00 w. 17.10.2022 bis
Albert-Einstein-Str. 6 - SR 2-ACP   findet statt  
Gruppe 0-Gruppe:

Zugeordnete Personen
Zugeordnete Personen Zuständigkeit
Besaga, Vira , Dr.-Ing. verantwortlich
Schmidl, Frank, apl. Prof., Dr. rer. nat. verantwortlich
Zuordnung zu Einrichtungen
Physikalisch-Astronomische Fakultät

Recommended reading:

      • Sze, S. and Ng, K.K. (2006). Physics of Semiconductor Devices. John Wiley & Sons, Inc.

      • Nishi, Y., & Doering, R. (Eds.). (2000). Handbook of semiconductor manufacturing technology. CRC press.

      • Holst, G. C. (2007). CMOS/CCD sensors and camera systems. JCD Publishing.

      • Seitz, P., & Theuwissen, A. J. (Eds.). (2011). Single-photon imaging. Springer Science & Business Media.

      • Piprek, J. (2013). Semiconductor optoelectronic devices: introduction to physics and simulation. Elsevier.

      • Chow, W. W., Koch, S. W., & Sargent, M. I. (2012). Semiconductor-laser physics. Springer Science & Business Media.

Further recommended literature will be specified along with the corresponding lectures.


There is no prerequisites for admission to the module, attendance of ”Optoelectronics” and/or ”Semiconductor nanomaterials” modules is though recommended.


The course will cover the following topics:

     • Review of fundamentals of semiconductors and their optical properties

     • Aspects of semiconductor materials manufacturing and characterization

     • Modern semiconductor-based detectors for high-end fundamental and applied research (image detectors, single photon detectors, etc.)

     • Semiconductor based sources: classical (e.g., broad- and narrow-band sources) and quantum (e.g., low-dimensional structures and sources of single photons)

     • Overview of the latest technology advancements, including recently market-launched devices for high-end fundamental and applied research (e.g., quantum CMOS)

The aim of the course is that the participating students learn about the details of modern detectors and light sources based on semiconductor materials, which are employed nowadays for the high-end fundamental and applied research. Based on a detailed discussion of the underlying physics, the students should also learn about the main features of such detectors and sources and their operation requirements, as well as what are the paths towards expected further advancements in the field. The students will learn what to expect from modern semiconductor devices during experiments and what criteria to consider when selecting a detector/source for a certain application.

The course is intended to help students interested in practical work to become more confident and independent within the experiments for their master thesis and/or doctorate project, while for theory enthusiasts to better understand what is achievable in the real measurements and what the current limitations are. This will give the students an overview of what is the state-of-the-art of the technology and what are the current goals, so that they could benefit from this vision in their later career.

To achieve the above-mentioned goals, the course, first, will shortly review the basics of semiconductor materials with an emphasis on their optical properties and discuss the aspects of manufacturing and characterization of semiconductors depending on the intended application. Then, the largest part of the course will be dedicated to the detailed analysis of the physics, operation principles, and application parameters of modern semiconductor devices, e.g. scientific CCD and CMOS cameras, single photon detectors and their arrays, as well as light sources of classical (e.g., LEDs, lasers) and quantum (e.g., single photon sources) nature.

To enable the students to apply the knowledge obtained in the lectures to the solution of real problems, the accompanying tutorials will provide students with practical examples of devices and their selection, analyze the latest reported advancements, as well as will offer lab tours and/or demonstration experiments. 


Master students of M.Sc. Physics (with focus „Optics”) and M.Sc. Photonics study programs

Keine Einordnung ins Vorlesungsverzeichnis vorhanden. Veranstaltung ist aus dem Semester WS 2022 , Aktuelles Semester: WiSe 2023/24

Impressum | Datenschutzerklärung