Literatur |
Suggested reading: Cesare Franchini, Michele Reticcioli, Martin Setvin, and Ulrike Diebold. Polarons in materials. Nature Reviews Materials 1-27 (2021).
link to publication
Literature discussed in the lecture & lecture notes will be available on moodle:
https://moodle.uni-jena.de/course/view.php?id=30409 |
Bemerkung |
Polarons, or charge carriers coupled to crystal lattice deformations, are a very common phenomenon in crystalline materials. They can determine electrical conductivity and are even capable of inducing metal-semiconductor transitions. This lecture will give an overview of historical theoretical treatment of polarons and then focus on more recent ab initio modeling of polarons.
Content of the course:
- overview
- polaron theory of Landau and Pekar (LP)
- Post-LP polaron theories
- Hartree-Fock theory - principles
- Density-functional theory (DFT) - principles & implementation(s)
- methods beyond DFT and Hartree-Fock for modeling polarons
- ab initio polaron equations - Sio et al., "Ab initio theory of polarons: Formalism and applications", Phys. Rev. B 99, 235139 (2019); Sio et al., "Polarons from first principles without supercells", PRL 122, 246403 (2019)
- discussion of papers on polarons: - "Electron motion in crystal lattices" by Lev Landau, Phys. Z. Sowjet. 3, 664 (1933) - "Limitation of Fermi level shifts by polaron defect states in hematite photoelectrodes" by Christian Lohaus, Andreas Klein and Wolfram Jaegermann, Nature Communications 9, 4309 (2018) - ”Direct view at excess electrons in TiO2 rutile and anatase” by Setvin, M. et al., Phys. Rev. Lett. 113, 086402 (2014) - ”Optical absorption induced by small polaron formation in transition metal oxides: The case of Co3O4” by Smart, T. J., Pham, T. A., Ping, Y. & Ogitsu, T., Phys. Rev. Mater. 3, 102401 (2019) - ”Semiconducting transition-metal oxides based on d5 cations: Theory for MnO and Fe2O3” by Haowei Peng and Stephan Lany, Phys. Rev. B 85, 201202(R) (2012) - ”Niobium doped TiO2 : Intrinsic transparent metallic anatase versus highly resistive rutile phase” by Zhang, S. X. et al., J. Appl. Phys. 102, 013701 (2007) |