Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 

ONLINE im SoSe 21: Wahrscheinlichkeitstheorie und Statistik (Lehramt Gymnasium) - Einzelansicht

  • Funktionen:
Grunddaten
Veranstaltungsart Vorlesung/Übung Langtext
Veranstaltungsnummer 10166 Kurztext FMI-MA3027
Semester SS 2021 SWS 4
Teilnehmer 1. Platzvergabe 20 Max. Teilnehmer 2. Platzvergabe 30
Rhythmus Jedes 2. Semester Studienjahr
Credits für IB und SPZ
E-Learning-Plattform
Hyperlink
Sprache Deutsch
Belegungsfrist Standardbelegung Wintersemester ab Mitte August/ Sommersemester ab Mitte Februar
Abmeldefristen B1 - Belegung ohne Abmeldung    22.02.2021 09:00:00 - 06.04.2021 07:59:59   
Nach Zulassung ist eine Abmeldung nur durch den Dozenten möglich.
B2 - Belegung mit Abmeldung 6 Wochen    06.04.2021 08:00:00 - 24.05.2021 23:59:59    aktuell
Nach Zulassung ist eine Abmeldung auch durch den Teilnehmer möglich.
B3 - Belegung ohne Abmeldung    25.05.2021 00:00:01 - 16.08.2021 07:59:59   
Nach Zulassung ist eine Abmeldung nur durch den Dozenten möglich.
Termine Gruppe: 0-Gruppe iCalendar Export für Outlook
  Tag Zeit Rhythmus Dauer Raum Lehrperson (Zuständigkeit) Status Bemerkung fällt aus am Max. Teilnehmer 2. Platzvergabe
Einzeltermine anzeigen Mi. 10:00 bis 12:00 Einzel-V. 04.08.2021 bis
04.08.2021
August-Bebel-Straße 4 - HS (Domaschk-Hörsaal)   findet statt

PRAESENZ-Klausur

 
Einzeltermine anzeigen Mi. 10:00 bis 12:00 Einzel-V. 13.10.2021 bis
13.10.2021
Carl-Zeiß-Straße 3 - SR 113   findet statt

PRAESENZ-Nachklausur

 
Gruppe 0-Gruppe:
Termine Gruppe: 1-Gruppe iCalendar Export für Outlook
  Tag Zeit Rhythmus Dauer Raum Lehrperson (Zuständigkeit) Status Bemerkung fällt aus am Max. Teilnehmer 2. Platzvergabe
Einzeltermine anzeigen Mo. 14:00 bis 16:00 w. 12.04.2021 bis
12.07.2021
    findet statt  
Einzeltermine anzeigen Mi. 08:00 bis 10:00 w. 14.04.2021 bis
14.07.2021
    findet statt  
Gruppe 1-Gruppe:



Zugeordnete Person
Zugeordnete Person Zuständigkeit
Schmalfuß, Björn, Universitätsprofessor, Dr. verantwortlich
Module / Prüfungen
Modul Prüfungsnummer Titel VE.Nr. Veranstaltungseinheit
FMI-MA3027 Wahrscheinlichkeitstheorie und Statistik für Lehrerstudenten
P-Nr. : 62321 Wahrscheinlichkeitstheorie und Statistik für Lehrerstudenten: schriftl. o. mündliche Prüfung
62323 Wahrscheinlichkeitstheorie und Statistik für Lehrerstudenten: Vorlesung/Übung
FMI-MA5002 Vorbereitungsmodul 2, mündliche Prüfung
P-Nr. : 62627 Vorbereitungsmodul 2: Stochastik Mündliche Prüfung
62642 Vorbereitungsmodul 2, mündliche Prüfung: Vorlesung/Übung Stoch.
Zuordnung zu Einrichtungen
Fakultät für Mathematik und Informatik
Stochastik
Inhalt
Kommentar

 

Nach einer Wiederholung der Kernaussagen der Wahrscheinlichkeitsheorie wird im ersten Teil der Vorlesung auf verschiedene Anwendungen eingegangen. Zuerst werden zufällige Systeme analysiert die in diskreter Zeit zwischen verschiedenen Zuständen mit gewissen Wahrscheinlichkeiten hin-und her springen. Es wird der Begriff des Gleichgewichts für diese Systeme hergeleitet. Der zweite Teil beschäftigt sich mit Geburts-und Todesprozessen mit denen das Wachstum von Populationen aber auch die Ausbreitung von Epidemien beschrieben werden kann.

Im zweiten Teil wird noch einmal auf die wichtigsten Begriffe der schließenden Statistik eingegangen. Bezüglich der 1. Wahrscheinlichkeitstheorie und Statistik Vorlesung werden neue Tests eingeführt. Im zweiten Teil, der Regressionsanalyse geht es darum, Messdaten (x_i,y_i) zu analysieren. Speziell geht es darum Kurven durch die Messdatenpaare zu legen und somit einen funktionalen Zusammenhang zwischen den Werten y und den Argumenten x zu schätzen. Diese Methoden haben eine weite Verbreitung in der Praxis.

INHALT


1. Wiederholung Stochastik 4
1.1. Zufällige Ereignisse und Wahrscheinlichkeiten 4
1.2. Die bedingte Wahrscheinlichkeit und stochastische Unabhängigkeit 7
1.3. Zufallsvariablen und deren Wahrscheinlichkeitsverteilung 10
1.4. Kenngrößen von Zufallsvariablen 21
2. Markov Ketten 24
2.1. Stochastische Prozesse 24
2.2. Definition einer Markov-Kette 24
2.3. Klassifikation der Zust¨ ande einer Markov-Kette 33
3. Stationäres Verhalten der Markov-Kette 37
3.1. Markov-Ketten mit endlich vielen Zust¨ anden 40
3.2. Eine Markov-Kette mit unendlich vielen Zuständen 43
4. Der Poisson Prozess 45
4.1. Einführung des Poisson Prozess 45
4.2. Die Zwischenankunftszeiten 52
5. Markov-Prozesse mit stetiger Zeit 60
5.1. Definition eines Markov-Prozesses mit stetiger Zeit 60
5.2. Der reine Geburtsprozess 61
5.3. Der Yule–Prozess 65
5.4. Reine Todesprozesse 67
5.5. Geburts-und Todes-Prozesse 70
5.6. Warteschlangentheorie 75
6. Statistik: Schätzungen, Konfidenzintervalle, Tests 80
6.1. Das Grundmodel der Statistik 80
6.2. Eigenschaften von Punktschätzungen 83
6.3. Intervallsch¨ atzungen 85
6.4. Statistische Tests 91
7. Regressionsanalyse 104
7.1. Einleitung 104
7.2. Differentiation von Matrizen 106
7.3. Die Methode der kleinsten Quadrate 107
7.4. Bewertung der Regressionsrechnung 112
7.5. Das Gauß-Markov Modell der Regression 116
Anhang 120
Gewöhnliche Differentialgleichungen 120
Die Faltung 123
Die wahrscheinlichkeitsgenerierende Funktion 124
Literatur

LITERATUR

[1] Shunji Osaki. Applied Stochastic System Modeling. Springer, 1992.
[2] Norbert Henze. Stochastik für Einsteiger. Vieweg, 2000.
[3] Christian Hesse. Angewandte Wahrscheinlichkeitstheorie. Springer Vieweg, 2003.
[4] Ulrich Krengel. Einführung in die Wahrscheinlichkeitstheorie und Statistik, volume 59 of Vieweg
Studium: Aufbaukurs Mathematik [Vieweg Studies: Mathematics Course]. Friedr. Vieweg & Sohn,
Braunschweig, 1988.
[5] Albrecht Irle. Wahrscheinlichketstheorie und Statistik. Teubner, 2001.
[6] L. Sachs. Angewandte Statistik. Springer-Verlag, Berlin, Heidelberg, New York, 1999.

Strukturbaum
Die Veranstaltung wurde 1 mal im Vorlesungsverzeichnis SoSe 2021 gefunden:
Wahlpflichtmodule  - - - 1

Impressum | Datenschutzerklärung