Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
Name des Moduls [117610] Quantum Computing Bezeichnung des Moduls PAFMO261

Studiengang [128] - Physik ECTS Punkte 4

Arbeitsaufwand für Selbststudium 75 Häufigkeit des Angebotes (Modulturnus) jedes 2. Semester (ab Sommersemester)
Arbeitsaufwand in Präsenzstunden 45 Dauer des Moduls 1
Arbeitsaufwand Summe (Workload) 120    

Modul-Verantwortliche/r

Dr. F. Steinlechner, Dr. F. Eilenberger, Prof. Dr. T. Pertsch

Voraussetzung für die Vergabe von Leistungspunkten (Prüfungsform)

written examination (100%)

Empfohlene Literatur

A list of literature and materials will be provided at the beginning of the semester.

Unterrichtssprache

English

Art des Moduls (Pflicht-, Wahlpflicht- oder Wahlmodul)

128 M.Sc. Physics focus „specialisation”: Required elective module

628 M.Sc. Photonics: Required elective module

528 M.Sc. Quantum Science and Technology, required elective module, subject area “specialization”

Zusammensetzung des Moduls / Lehrformen (V, Ü, S, Praktikum, …)

Lecture: 2 h per week

Exercise: 1 h per week

Inhalte

• Basic introduction to algorithms and computing

• The Qubit and entanglement thereof

• Basics of quantum algorithms

• Advanced quantum algorithms

• Implementation of QuBits and quantum computers

• Hands-on circuits

Lern- und Qualifikationsziele

After active participation in the course, the students will be familiar with the basic concepts of quantum computation and the implementation of quantum algorithms. They will be able to apply their knowledge in the assessment and creation of quantum algorithms and the development of quantum information systems.

The intended learning outcome is to introduce the students to the basic usage of quantum bits for information processing. To provide further insight, the course will expand this concept on multipartite systems and introduce the concept of entanglement.

In a further step we shall see how individual quantum operations tie together to create algorithms. Important algorithms, such as the quantum Fourier transformation, the algorithms of Shor and Grover will be discussed. To relate the abstract knowledge on quantum algorithms to practical applications, real-world implementations of quantum computers will be discussed.

Impressum | Datenschutzerklärung