Description of Module Master of Science 528 Quantum Science and Technology

PO-Version 2024

Contents summary

MedPhoA1.3	Physical Chemistry	3
PAFBX411	Computational Physics II	5
PAFMF001	Theoretical Solid State Physics	7
PAFMF002	Electronic Structure Theory	9
PAFMF003	Solid State Optics	11
PAFMF006	Superconductivity	13
PAFMF009	Optoelectronics	15
PAFMF012	Materials Informatics	17
PAFMF016	Nanomaterials and Nanotechnology	18
PAFMF018	Quantum Information Theory	19
PAFMF021	2D materials	21
PAFMO001	Fundamentals of Modern Optics	23
PAFMO002	Structure of Matter	25
PAFMO005	Optical Metrology and Sensing	27
PAFMO106	Atomic Physics at High Field Strengths	29
PAFMO151	Experimental Nonlinear Optics	31
PAFMO183	Introduction to Nanooptics	33
PAFMO184	Integrated Optics	35
PAFMO185	Innovation Methods in Photonics	37
PAFMO187	Ion traps and precision experiments	39
PAFMO210	Machine Learning for Quantum Science	40
PAFMO230	Nano Engineering	42
PAFMO250	Particles in Strong Electromagnetic Fields	44
PAFMO260	Quantum Optics	46
PAFMO261	Quantum Computing	48
PAFM0262	Quantum Communicaton	50
PAFM0263	Quantum Imaging and Sensing	52
PAFMO265	Semiconductor Nanomaterials	54
PAFMO270	Theory of Nonlinear Optics	56
PAFMP001	Advanced Quantum Theory	58
PAFMP003	Advanced Seminar Gravitational and Quantum Physics	60

generated 27.10.2025 Page 1 of 110

PAFMQ001	Fundamentals of Quantum information	61
PAFMQ002	Advanced Quantum Information	63
PAFMQ003	Introduction to Quantum physics	65
PAFMQ007	Quantum Laboratory	66
PAFMQ008	Internship	67
PAFMQ009	Research Project	68
PAFMQ100	Molecular quantum mechanics / quantum chemistry I	69
PAFMQ101	Molecular quantum mechanics / quantum chemistry II	70
PAFMQ900	Topics of Current Research: Quantum Information I	71
PAFMQ901	Topics of Current Research: Quantum Information I	72
PAFMQ999	Extracurricular qualifications	73
PAFMT001	General Relativity	74
PAFMT002	Particles and Fields	76
PAFMT003	Quantum Field Theory	78
PAFMT010	Advanced Quantum Field Theory	80
PAFMT011	Introduction to String Theory and AdS/CFT	81
PAFMT012	The Standard Model of Particle Physics	83
PAFMT013	Gauge Theories	85
PAFMT014	Lattice Field Theory	87
PAFMT015	Computational Quantum Physics	89
PAFMT016	Symmetries in Physics	91
PAFMT017	Atomic Theory	93
PAFMT018	Physics of the Quantum Vacuum in Strong Fields	95
PAFMT019	Supersymmetry	96
PAFMT099	Topics of Current Research: Quantum Field Theory	98
PAFMT202	Computational Physics III	99
PAFMT206	Computational Physics IV	101
PAFMT299	Topics of Current Research: Gravitational Theory	102
PAFMT300	Topics of Current Research: Gravitation- and Quantum Theory III	103
PAFMT301	Topics of Current Research: Gravitation- and Quantum Theory IV	105
PAFMQ099	Master thesis	107
	Abbrevations	109

Note:

Please note that you can find the information on examinations, courses corresponding to the examinations, and examination dates in the portal Friedolin under the menu item 'Browse module descriptions'. After logging in, please choose your degree, your study programme, and respective module. Any immediate changes made will be displayed promptly.

Page 2 of 110 generated 27.10.2025

Modul MedPhoA1.3 Physical	Chemistry
Module code	MedPhoA1.3
Module title (German)	Physical Chemistry
Module title (English)	Physical Chemistry
Person responsible for the module	Jürgen POPP, Michael SCHMITT, Rainer HEINTZMANN
Prerequisites for admission to the module	none
Recommended or expected prior knowledge	-
Prerequisite for what other modules	This module is part of the block "Adjustment" of the 1st semester.
Type of module (compulsory module, required elective module, elective module)	The module is mandatory for students not having a Bachelor degree in chemistry or physics. Students of chemistry or physics having passed the corresponding modules during their studies do not need to participate in this course.
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab tutorial, exercise, seminar, internship,)	lectures: 4h/week exercises: 2h/week
ECTS credits	8 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	240 h 90 h 150 h
Content	 Equilibrium thermodynamics: Properties of gases, first and second law of thermodynamics, chemical equilibrium, equilibrium electrochemistry Transport phenomena: molecular motion in gases and liquids, diffusion transport across biological membranes Chemical reactions: chemical kinetics, rate laws, temperature dependence of reaction rates, relaxation methods, kinetics of complex reactions
	 Basics of quantum mechanics: wavefunctions and operators, particle is a box, harmonic oscillator, particle on a sphere, rigid rotator Approximations: variational principle, Born-Oppenheimer approximation, linear combination of atomic orbitals (LCAO) method, Hartree-Fock, density functional theory (DFT)
Intended learning outcomes	This module provides an introduction into the fundamentals of physical chemistry. Topics include equilibrium thermodynamics, chemical kinetics and an introduction into molecular quantum mechanics (techniques of approximation).

generated 27.10.2025 Page 3 of 110

Prerequisites for admission to the module examination	none
Requirements for awarding credit points (type of examination)	written examination at the end of the semester
Additional information on the module	Used media: blackboard, beamer, overhead projector, written supplementary material
Recommended reading	• Textbooks on physical chemistry: o P.W. Atkins, J. de Paula: Physical Chemistry. 9th ed., OUP Oxford 2009.
	• Textbooks on molecular quantum mechanics: o P.W. Atkins, R.S. Friedman: Molecular quantum mechanics. 5th ed., Oxford University Press 2010.
Language of instruction	English

Page 4 of 110 generated 27.10.2025

Modul PAFBX411 Computation Module code	PAFBX411
Module title (German)	Computational Physics II
Module title (English)	Computational Physics II
Person responsible for the module	Prof. Dr. B. Brügmann
Prerequisites for admission to the module	-
Recommended or expected prior knowledge	Computational Physics I PAFBU311 Theoretische Mechanik PAFBT211 Elektrodynamik PAFBT311
Type of module (compulsory module, required elective module, elective module)	039 M.Sc. Geosciences, required elective module 128 M.Sc. Physics focus "Quantum and Gravitational Theory" 128 B.Sc. Physics, required elective module 679 B.Sc. Applied Computer Science, Application subject physics 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in summer semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 hours/week Exercise: 2 hours/week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	Introduction to Unix and higher-level programming languages (e.g.: C/C++, Fortran) Numerical solution of partial differential equations Monte Carlo method Molecular dynamics methods Minimization problems
Intended learning outcomes	Teaching the basic algorithms and practical skills for the numerical solution of complex physical problems and Visualization of large amounts of data
Prerequisites for admission to the module examination	-

generated 27.10.2025 Page 5 of 110

Requirements for awarding credit points (type of examination)	Written examination
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

Page 6 of 110 generated 27.10.2025

Modul PAFMF001 Theoretical	Solid State Physics
Module code	PAFMF001
Module title (German)	Theoretische Festkörperphysik
Module title (English)	Theoretical Solid State Physics
Person responsible for the module	Prof. Dr. U. Peschel
Prerequisites for admission to the module	none
Type of module (compulsory module, required elective module, elective module)	128 M.Sc. Physics, required elective module, focus "Solid state physics / Material science" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 4 h per week Exercise: 2 h per week
ECTS credits	8 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	240 h 90 h 150 h
Content	 Crystal structures and elastic properties of solids; Electronic properties of crystals; Approximate methods for electronic band structure; Semiconductors and defect physics; P-n junctions; Microscopic description of charge transport; Properties of alloys; Nanostructures and interfaces; Optical and dielectric properties of solids; Magnetism and superconductivity.
Intended learning outcomes	The course covers advanced topics of solid state physics, with a specific focus on the theoretical understanding of the properties of electrons in crystals. An effort is made to remain as rigorous as possible in the theoretical and mathematical treatment, while keeping the presentation at an accessible level through the presentation of interesting applications to experiments and advanced technology. After completion of the course the students will master the relation between electronic structure of crystalline solids and their dielectric, optical, transport, magnetic properties.
Prerequisites for admission to the module examination	Course exercises to be submitted; further information on the kind and scope will be given at the beginning of each semester.

generated 27.10.2025 Page 7 of 110

Requirements for awarding credit points (type of examination)	Written examination (100%)
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

Page 8 of 110 generated 27.10.2025

Modul PAFMF002 Electronic S	Structure Theory
Module code	PAFMF002
Module title (German)	Theorie der Elektronenstruktur
Module title (English)	Electronic Structure Theory
Person responsible for the module	Prof. Dr. U. Peschel
Prerequisites for admission to the module	-
Recommended or expected prior knowledge	-
Prerequisite for what other modules	-
Type of module (compulsory module, required elective module, elective module)	128 M.Sc. Physics: Required elective module 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in summer semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 3 h per week
ECTS credits	8 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	240 h 75 h 165 h
Content	Introduction to the many-body problem; Wavefunction-based approaches for electronic structure; Density functional theory; Electronic excitations: beyond density functional theory.
Intended learning outcomes	Electronic structure theory is a successful and ever-growing field, shared by theoretical physics and theoretical chemistry, that takes advantage from the increasing availability of high-performance computers. Starting only from the knowledge of the types of atoms that constitute a material (molecule, solid, nanostructure,) students will learn how to determine without further experimental input, i.e. using only the laws of quantum physics, its structural and electronic properties. The lecture will initiate the students to the state-of-the-art theoretical and computational approaches used for electronic structure calculations. In the practical classes the students will learn through tutorials to use different software for electronic structure simulations. During the last month they will realize a small independent scientific project.

generated 27.10.2025 Page 9 of 110

Prerequisites for admission to the module examination	Course exercises to be submitted; Further information on the kind and scope will be given at the beginning of each semester.
Requirements for awarding credit points (type of examination)	Oral examination (100%)
Additional information on the module	128 M.Sc.Physics: Specialization "Solid state physics / Material science". If requested by the participants and agreed on with the responsible teacher, this module can be offered on-site and/or online (hybrid).
Recommended reading	A list of Literature and materials will be provided at the beginning of the semester.
Language of instruction	English

Page 10 of 110 generated 27.10.2025

Modul PAFMF003 Solid State	Optics
Module code	PAFMF003
Module title (German)	Solid State Optics
Module title (English)	Solid State Optics
Person responsible for the module	Prof. Dr. H. Krüger
Prerequisites for admission to the module	-
Recommended or expected prior knowledge	-
Prerequisite for what other modules	-
Type of module (compulsory module, required elective module, elective module)	128 M.Sc. Physics: Required elective module 628 M.Sc. Photonics: Required elective module 528 M.Sc. Quantum Science and Technology: Required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in summer semester)
Duration of module	2 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 1 h per week
ECTS credits	8 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	240 h 90 h 150 h
Content	 Introduction to the many-body problem; Wavefunction-based approaches for electronic structure; Density functional theory; Electronic excitations: beyond density functional theory.
Intended learning outcomes	Electronic structure theory is a successful and ever-growing field, shared by theoretical physics and theoretical chemistry, that takes advantage from the increasing availability of high-performance computers. Starting only from the knowledge of the types of atoms that constitute a material (molecule, solid, nanostructure,) we will learn how to determine without further experimental input, i.e. using only the laws of quantum physics, its structural and electronic properties. The lecture will initiate the students to the state-of-the-art theoretical and computational approaches used for electronic structure calculations. In the practical classes the students will learn through tutorials to use different software for electronic structure simulations. During the last month they will realize a small independent scientific project.

generated 27.10.2025 Page 11 of 110

Prerequisites for admission to the module examination	Course exercises to be submitted; further information on the kind and scope will be given at the beginning of each semester.
Requirements for awarding credit points (type of examination)	Oral examination (100%)
Additional information on the module	
Recommended reading	A list of Literature and materials will be provided at the beginning of the semester.
Language of instruction	English

Page 12 of 110 generated 27.10.2025

Modul PAFMF006 Supercondu	ictivity
Module code	PAFMF006
Module title (German)	Supraleitung
Module title (English)	Superconductivity
Person responsible for the module	apl. Prof. Dr. F. Schmidl
Prerequisites for admission to the module	none
Type of module (compulsory module, required elective module, elective module)	128 M.Sc. Physics, Required elective module focus "Solid state physics / Material science", 177 M.Sc. Materialwissenschaften, Required elective module
	528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in summer semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 1 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 60 h 60 h
Content	 Basic effects of superconductivity; characteristics of superconductors; Josephson effects; Superconducting materials (classes, structure, properties); fabrication (single crystals, solid material, layers, wires, ribbons); modification of the materials (doping, pinning); Applications of superconductivity.
Intended learning outcomes	 Unterstanding the basic concepts and concepts of superconductivity, superconducting materials and their application; creation of ready-to-use basic knowledge; Ability to independently re-deepen the subject. Ability to participate in a scientific discussion
Prerequisites for admission to the module examination	Active participation in discussions in the seminar and preparation of a term paper
Requirements for awarding credit points (type of examination)	Module grade: term paper and presentation (100%)
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.

generated 27.10.2025 Page 13 of 110

Language of instruction English

Page 14 of 110 generated 27.10.2025

Modul PAFMF009 Optoelectro	onics
Module code	PAFMF009
Module title (German)	Optoelektronik
Module title (English)	Optoelectronics
Person responsible for the module	Prof. Dr. G. Soavi
Prerequisites for admission to the module	-
Recommended or expected prior knowledge	-
Prerequisite for what other modules	-
Type of module (compulsory module, required elective module, elective module)	128 M.Sc. Physics: Required elective module 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization" 628 M.Sc. Photonics: Required elective module
Frequency of offer (how often is the module offered?)	Every second semester (beginning in summer semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 1 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	 Semiconductors Optoelectronic devices Photodiodes Light emitting diodes Semiconductor optical amplifier
Intended learning outcomes	In this course the student will learn how to solve problems related to the fundamentals of semiconductor optical devices such as photodiodes, solar cells, LEDs, laser diodes and semiconductor optical amplifiers.
Prerequisites for admission to the module examination	-
Requirements for awarding credit points (type of examination)	Written examination (100%)
Additional information on the module	
Recommended reading	A list of Literature and materials will be provided at the beginning of the semester.

generated 27.10.2025 Page 15 of 110

Language of instruction English

Page 16 of 110 generated 27.10.2025

Modul PAFMF012 Materials Ir	nformatics
Module code	PAFMF012
Module title (German)	Materialinformatik
Module title (English)	Materials Informatics
Person responsible for the module	Prof. Dr. J. George
Type of module (compulsory module, required elective module, elective module)	128 MSc. Physics specialization solid-state physics/material science: required elective module 528 MSc. Quantum Science & Technology: Specialization
Frequency of offer (how often is the module offered?)	Every second semester (beginning in summer semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 SWS Exercises: 2 SWS
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 60 h 60 h
Content	Object-oriented programming and data science with Python, data sources and access to material data, automation of data generation (e.g. using density functional theory or machine-learned interatomic potentials), typical descriptors for materials (representation of the composition of crystalline or amorphous solids or the structure of crystalline solids), general principles of machine learning, classification and regression, supervised and unsupervised learning, clustering, kernel methods, neural networks (different architectures), current examples from materials informatics.
Intended learning outcomes	Students are familiar with the fundamental problems in materials informatics (focus on inorganic solid-state materials). They know basic concepts from the field of data science and machine learning and can apply methods from these fields to topics relating to materials and their data.
Prerequisites for admission to the module examination	Completion of the exercises (exact extend will be announced at the beginning of the module)
Requirements for awarding credit points (type of examination)	Oral examination or homework and presentation
Additional information on the module	Basic knowledge in Python is required
Recommended reading	Literature will be announced at the beginning of the semester
Language of instruction	English

generated 27.10.2025 Page 17 of 110

Modul PAFMF016 Nanomater	ials and Nanotechnology
Module code	PAFMF016
Module title (German)	Nanomaterialien und Nanotechnologie
Module title (English)	Nanomaterials and Nanotechnology
Person responsible for the module	Prof. Dr. C. Ronning
Prerequisites for admission to the module	none
Type of module (compulsory module, required elective module, elective module)	Required elective module M.Sc. Physics focus "Solid state physics / Material science" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	At irregular intervals
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 1 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	 dimension effects, Quantisation of electrons single-electron transistor, synthesis of nanomaterials, characterization of nanomaterials, Material systems: carbon nanotubes, graphene, magnetic nanomaterials, bionanomaterials, Application and technology of nanomaterials.
Intended learning outcomes	In-depth knowledge in the field of solid-state physics.
Prerequisites for admission to the module examination	Course exercises to be submitted; further information on the kind and scope will be given at the beginning of each semester.
Requirements for awarding credit points (type of examination)	Written or oral examination or presentation (100%) The form of the exam will be announced at the beginning of the semester.
Recommended reading	A list of literature and materials will be provided at the beginning of the semester
Language of instruction	English

Page 18 of 110 generated 27.10.2025

Modul PAFMF018 Quantum Information Theory	
Module code	PAFMF018
Module title (German)	Quanteninformationstheorie
Module title (English)	Quantum Information Theory
Person responsible for the module	Prof. Dr. M. Gärttner
Prerequisites for admission to the module	-
Recommended or expected prior knowledge	Quantum mechanics, linear algebra
Prerequisite for what other modules	-
Type of module (compulsory module, required elective module, elective	128 M.Sc. Physics: Required elective module specialization "Quantum and Gravitational Theory"
module)	628 M.Sc. Photonics: Required elective module
	528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	At irregular intervals
Duration of module	1 semester
Module Components/Types of	Lecture: 2 h per week
courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Exercise: 1 h per week
ECTS credits	4 CP
Work load:	120 h
- In-class studying	45 h
- Independent studying (incl. preparations for examination)	75 h

generated 27.10.2025 Page 19 of 110

Content	Lecture of Drs. Eilenberger, Steinlechner
	Basic introduction to quantum optics;
	• Quantum light sources;
	• Encoding,
	 transmission and detection of information with quantum light;
	 Quantum communication and cryptography;
	Quantum communication networks;
	Outlook on Quantum metrology and Quantum imaging;
	Lecture of Dr. Sondenheimer
	• Open quantum systems, Density matrix formalism, Generalized measurements, Quantum channels
	Superdense coding, quantum teleportation
	• Entanglement theory, Bell inequalities,
	CHSH inequalities
	Quantum circuits, universal gates
	Quantum error correction
Intended learning outcomes	The course will give a basic introduction into the usage of quantum states of light for the exchange of information. It will introduce contemporary methods for the generation of quantum light and schemes that leverage these states for the exchange of information, rangingfrom fundamental concepts and experiments to state of the artimplementations for secure communication networks. The course willalso give an outlook to aspects of Quantum metrology and imaging. Afteractive participation in the course, the students will be familiar with the basic concepts and phenomena of quantum information exchangeand some aspects related to the practical implementation thereof. They will be able to apply their knowledge in the assessment and setup of experiments and devices for applications of quantuminformation processing. Vermittlung grundlegender Kenntnisse zur Übertragung und Verarbeitung von Information mit Hilfe von Quantensystemen als InformationsträgerInformationstheoretische Beherrschung der Verschränktheit von Quantensystemen.
Prerequisites for admission to the module examination	-
Requirements for awarding credit points (type of examination)	Written or oral examination (100%); The selected form of the exam will be announced at the beginning of the semester.
Additional information on the module	
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

Page 20 of 110 generated 27.10.2025

Modul PAFMF021 2D materia	ls
Module code	PAFMF021
Module title (German)	Zweidimensionale Materialien
Module title (English)	2D materials
Person responsible for the module	Prof. Dr. G. Soavi
Prerequisites for admission to the module	-
Recommended or expected prior knowledge	-
Prerequisite for what other modules	-
Type of module (compulsory module, required elective module, elective module)	128 M.Sc. Physics: Required elective module 628 M.Sc. Photonics: Required elective module 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 1 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	 Graphene: electrical and optical properties. Applications in electronic and optoelectronic. Semiconducting 2D materials: Coulomb screening and the concept of excitons. Optical spectroscopy of excitons. Optoelectronic applications. Heterostructures: electron and exciton interactions in layered heterostructures
Intended learning outcomes	 Mastering the basics and methods of two-dimensional materials Ability to work independently on problems in the field of two-dimensional materials
Prerequisites for admission to the module examination	-
Requirements for awarding credit points (type of examination)	Written or oral examination (100%) The selected form of the exam will be announced at the beginning of the semester.
Additional information on the module	

generated 27.10.2025 Page 21 of 110

Recommended reading	A list of Literature and materials will be provided at the beginning of the semester.
Language of instruction	English

Page 22 of 110 generated 27.10.2025

Modul PAFMO001 Fundament	tals of Modern Optics
Module code	PAFMO001
Module title (German)	Fundamentals of Modern Optics
Module title (English)	Fundamentals of Modern Optics
Person responsible for the module	Prof. Dr. T. Pertsch
Prerequisites for admission to the module	-
Recommended or expected prior knowledge	-
Prerequisite for what other modules	-
Type of module (compulsory module, required elective module, elective module)	628 M.Sc. Photonics: Compulsory Module 528 M.Sc. Quantum Science and Technology, required elective module, subject area "adjustment"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 4 h per week Exercise: 2 h per week
ECTS credits	8 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	240 h 90 h 150 h
Content	 Basic concepts of wave optics Dielectric function to describe light-matter interaction Propagation of beams and pulses Diffraction theory- Elements of Fourier optics Polarization of light Light in structured media Optics in crystals
Intended learning outcomes	The course covers the fundamentals of modern optics which are necessary for the understanding of optical phenomena in modern science and technology. The students will acquire a thorough knowledge of the most important concepts of modern optics. At the same time the importance and applications of optics in technology will be taught. This will enable students to solve advanced problems in general optics and follow more specialized courses in photonics.
Prerequisites for admission to the module examination	-

generated 27.10.2025 Page 23 of 110

Requirements for awarding credit points (type of examination)	Written examination (100%)
Additional information on the module	
Recommended reading	A list of Literature and materials will be provided at the beginning of the semester.
Language of instruction	English

Page 24 of 110 generated 27.10.2025

Modul PAFMO002 Structure o	f Matter
Module code	PAFMO002
Module title (German)	Structure of Matter
Module title (English)	Structure of Matter
Person responsible for the module	Prof. Dr. A. Tünnermann (FSU), Dr. O. Stenzel (FSU)
Prerequisites for admission to the module	-
Recommended or expected prior knowledge	-
Prerequisite for what other modules	-
Type of module (compulsory module, required elective module, elective module)	828 MSc. Photon Science and Technology: Required Elective Module Adjustment 628 M.Sc. Photonics: Compulsory Module 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 4 h per week Exercise: 2 h per week
ECTS credits	8 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	240 h 90 h 150 h
Content	 Classical interaction of light with matter Basic knowledge on quantum mechanics Einstein coefficients and Plancks formula Selection rules Hydrogen atom and helium atom Introduction to molecular spectroscopy Dielectric function and linear optical constants Kramers-Kronig-Relations Linear optical properties of crystalline and amorphous solids Basic nonlinear optical effects

generated 27.10.2025 Page 25 of 110

Intended learning outcomes	 The students understand the classical interaction of light with matter and basic quantum mechanics can apply Einstein coefficients, Planck's formula, and selection rules have a solid understanding of the hydrogen and helium atoms can analyze molecular spectroscopy data and optical properties of materials understand the dielectric function, Kramers-Kronig relations, and basic
	nonlinear optical effects
Prerequisites for admission to the module examination	-
Requirements for awarding credit points (type of examination)	Written examination (100%)
Additional information on the module	
Recommended reading	Demtröder, "Experimental physics II" Demtröder, "Experimental physics III – atoms, molecules and solids" R. Feynman, "Feynman lectures on physics III quantum mechanics" Jackson, "Classical ElectrodynamicsE. Hecht, "Optics"
Language of instruction	English

Page 26 of 110 generated 27.10.2025

Modul PAFMO005 Optical Me	trology and Sensing
Module code	PAFMO005
Module title (German)	Optical Metrology and Sensing
Module title (English)	Optical Metrology and Sensing
Person responsible for the module	Prof. Dr. Isabelle Staude (FSU)
Prerequisites for admission to the module	-
Recommended or expected prior knowledge	-
Prerequisite for what other modules	-
Type of module (compulsory module, required elective module, elective module)	828 MSc. Photon Science and Technology: Required Elective Course Specialization 628 M.Sc. Photonics: compulsory module 128 MSc. Physics: required elective module 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab tutorial, exercise, seminar, internship,)	Lecture 2 SWS and exercise 1 SWS
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	 Basic principles Wave optical fundamentals Sensors Fringe projection, triangulation Interferometry and wave front sensing Holography Speckle methods and OCT Phase retrieval Metrology of aspheres and freeform surfaces Confocal methods

generated 27.10.2025 Page 27 of 110

Intended learning outcomes	The students
	understand the basic principles and wave optical fundamentals of optical metrology are familiar with key sensor technologies and measurement techniques
	can apply interferometry, holography, and speckle methods for precise measurements understand phase retrieval and its role in optical metrology
	can analyze and compare metrology techniques for aspheres, freeform surfaces, and confocal methods
Prerequisites for admission to the module examination	- -
Requirements for awarding credit points (type of examination)	90 min written exam
Additional information on the module	
Recommended reading	
Language of instruction	English

Page 28 of 110 generated 27.10.2025

Modul PAFMO106 Atomic Phy	ysics at High Field Strengths
Module code	PAFMO106
Module title (German)	Atomic Physics at High Field Strengths
Module title (English)	Atomic Physics at High Field Strengths
Person responsible for the module	Prof. Dr. T. Stöhlker
Prerequisites for admission to the module	-
Recommended or expected prior knowledge	Basic knowledge in atomic physics
Prerequisite for what other modules	-
Type of module (compulsory module, required elective module, elective module)	128 M.Sc. Physics: Required elective module 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization 628 M.Sc. Photonics: Required elective module
Frequency of offer (how often is the module offered?)	Every semester
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 1 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	 Strong field effects on the atomic structure Relativistic and QED effects on the structure of heavy ions X-ray spectroscopy of high-Z ions Application in x-ray astronomy Penetration of charged particles through matter Particle dynamics in of atoms and ions in strong laser fields Relativistic ion-atom and ion-electron collisions Fundamental interaction processes Scattering, absorption and energy loss Detection methods Particle creation

generated 27.10.2025 Page 29 of 110

Intended learning outcomes	The Module provides insight into the basic techniques and concepts in physics related to extreme electromagnetic fields. Their relevance to nowadays applications will be discussed in addition. The Module also introduces the basic interaction processes of high-energy photon and particle beams with matter, including recent developments of high intensity radiation sources, such as free electron lasers and modern particle accelerators. Experimental methods and the related theoretical description will be reviewed in great detail.
Prerequisites for admission to the module examination	Course exercises to be submitted; further information on the kind and scope will be given at the beginning of each semester.
Requirements for awarding credit points (type of examination)	Oral examination (100%)
Additional information on the module	
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English (German on request)

Page 30 of 110 generated 27.10.2025

Modul PAFMO151 Experiment	tal Nonlinear Optics
Module code	PAFMO151
Module title (German)	Experimental Nonlinear Optics
Module title (English)	Experimental Nonlinear Optics
Person responsible for the module	Prof. Dr. G. G. Paulus (FSU)
Prerequisites for admission to the module	-
Recommended or expected prior knowledge	-
Prerequisite for what other modules	-
Type of module (compulsory module, required elective module, elective module)	828 MSc. Photon Science and Technology: Required Elective Course Specialization 128 M.Sc. Physics: Required elective module 628 M.Sc. Photonics: Required elective module 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture 2 SWS and exercise 1 SWS
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	 Propagation of light in crystals; Properties of the non-linear susceptibility tensor; Description of light propagation in non-linear media; Parametric effects; Second harmonic generation; Phase-matching; Propagation of ultrashort pulses; High-harmonic generation; Solitons

generated 27.10.2025 Page 31 of 110

·	understand light propagation in nonlinear media and the role of the nonlinear susceptibility tensor can describe and analyze parametric
	effects and second harmonic generation
	grasp the concept of phase-matching and its importance in nonlinear optical processes
	are familiar with ultrashort pulse propagation and high-harmonic generation
	can explain soliton formation and its relevance in nonlinear optics
Prerequisites for admission to the module examination	-
Requirements for awarding credit points (type of examination)	90 min written exam
Additional information on the module	e 128 M.Sc. Physics: Required elective module (Specialization in "Optics")
Recommended reading	
anguage of instruction	English

Page 32 of 110 generated 27.10.2025

Modul PAFMO183 Introductio	n to Nanooptics
Module code	PAFMO183
Module title (German)	Introduction to Nanooptics
Module title (English)	Introduction to Nanooptics
Person responsible for the module	Prof. Dr. I. Staude (FSU), Prof. Dr. T. Pertsch (FSU)
Prerequisites for admission to the module	-
Recommended or expected prior knowledge	Fundamental knowledge on modern optics and condensed matter physics
Prerequisite for what other modules	-
Type of module (compulsory module, required elective module, elective module)	828 MSc. Photon Science and Technology: Required Elective Course Specialization 128 M.Sc. Physics: Required elective module 628 M.Sc. Photonics: Required elective module 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture 2 SWS and exercise 1 SWS
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	 Surface-plasmon-polaritons; Plasmonics; Photonic crystals; Fabrication and optical characterization of nanostructures; Photonic nanomaterials / metamaterials / metasurfaces; Optical nanoemitters; Optical nanoantennas.

generated 27.10.2025 Page 33 of 110

Intended learning outcomes	The course provides an introduction to the broad research field of nanooptics. The students will learn about different concepts which are applied to control the emission, propagation, and absorption of light at subwavelength spatial dimensions. Furthermore, they will learn how nanostructures can be used to optically interact selectively with nanoscale matter, a capability not achievable with standard diffraction limited microscopy. After successful completion of the course the students should be capable of understanding present problems of the research field and should be able to solve basic problems using advanced literature.
Prerequisites for admission to the module examination	-
Requirements for awarding credit points (type of examination)	90 min written exam
Additional information on the module	•
Recommended reading	L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge 2006; P. Prasad, Nanophotonics, Wiley 2004; J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals – Molding the Flow of Light, Princeton University Press (2008) list of selected journal publications given during the lecture.
Language of instruction	English

Page 34 of 110 generated 27.10.2025

Modul PAFMO184 Integrated	Optics
Module code	PAFMO184
Module title (German)	Integrated Optics
Module title (English)	Integrated Optics
Person responsible for the module	Dr. M. Gräfe (FSU), Dr. V. Gili (FSU), Prof. Dr. T. Pertsch (FSU)
Type of module (compulsory module, required elective module, elective module)	828 MSc. Photon Science and Technology: Required Elective Course Specialization 128 M.Sc. Physics focus "Optics": Required elective module 628 M.Sc. Photonics: Required elective module 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in summer semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture 2 SWS and exercise 1 SWS
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	The lecture will cover a significant part of integrated quantum photonics, which is one of the pillars of the current quantum technology development. In particular, the lecture will cover the following topics • Integrated optics on a single photon level • Generation and manipulation of quantum states of light using integrated waveguides • Overview over integrated photonic platforms and fabrication of passive and active waveguide structures • Quantum walks in linear and non-linear waveguide lattices • Introduction to photonic quantum computation and simulation • Measurements using superconducting nanowire single photon detectors and transition edge sensors

generated 27.10.2025 Page 35 of 110

Intended learning outcomes	The course should provide the participating students with a profound knowledge on the state of the art of integrated optics used for the realization of quantum optical devices.
	After active participation in the course, the students will be familiar with the basic concepts and phenomena of integrated quantum photonics and will be able to develop own concepts for integrated quantum circuitry.
	The intended learning outcome is that the students are introduced to the basics on the field of integrated quantum optics and its applications.
	Therefore, course starts with an overview on the generation of non-classical states of light with special attention on integrated solutions. Afterwards several integrated photonic platforms will be discussed ranging from fabrication to performance and useability. Based on that the on-chip manipulation of non-classical states of light will be discussed. This starts with the very general concept of quantum walks and continues towards quantum simulation. It ends with an introductory to photonic quantum computing with a clear focus on practical implementation of quantum photonic gate structures. The course closes with the discussion on non-classical light detection in integrated photonics.
Requirements for awarding credit points (type of examination)	90 min written exam
Additional information on the module	
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

Page 36 of 110 generated 27.10.2025

Modul PAFM0185 Innovation	Methods in Photonics
Module code	PAFMO185
Module title (German)	Innovation Methods in Photonics
Module title (English)	Innovation Methods in Photonics
Person responsible for the module	Dr. M. Gräfe (FSU), Dr. V. Gili (FSU), Prof. Dr. T. Pertsch (FSU)
Type of module (compulsory module, required elective module, elective module)	828 MSc. Photon Science and Technology: Required Elective Course Specialization 128 M.Sc. Physics focus "Optics": Required elective module 628 M.Sc. Photonics: Required elective module 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in summer semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 1 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	 Rapid prototyping technologies in photonics Innovation management and design thinking Hands-on/practical examples of photonics prototyping Entrepreneurial skills and business modelling Basics of intellectual property rights

generated 27.10.2025 Page 37 of 110

Intended learning outcomes	The students will learn how the results of their scientific research can be turned into relevant innovations as an important part of their future career. On the one hand, the course will enable students to understand and to drive innovation processes in photonics companies. On the other hand, students will develop an entrepreneurial skill set for the independent economical exploitation of scientific ideas. Therefore, the course introduces the basic knowledge on innovation management, entrepreneurship, and intellectual property rights. To practice their skills, the students will also conduct their own photonics innovation project during the semester by working hands-on in small teams in the photonics makerspace Lichtwerkstatt. During this practical part, they acquire and apply a thorough knowledge of photonic rapid prototyping technologies (e.g. 3d- scanning and printing, laser cutting, microcontrollers,) and the most important creativity methods and project management skills. To cover this range of topics, the course will be supported by guest lecturers from different sectors (academia, industry).
Requirements for awarding credit points (type of examination)	90 min written exam
Additional information on the module	
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

Page 38 of 110 generated 27.10.2025

Modul PAFMO187 Ion traps ar	nd precision experiments
Module code	PAFMO187
Module title (German)	Ionenfallen und Präzisionsexperimente
Module title (English)	Ion traps and precision experiments
Person responsible for the module	JunProf. Dr. P. Micke
Recommended or expected prior knowledge	Basics in electrodynamics, quantum mechanics, and atomic physics
Type of module (compulsory module, required elective module, elective module)	128 M.Sc. Physics specialization "Optics": Required elective module 128 LA Gymnasium Physik: Required elective module 528 M.Sc. Quantum Science and Technology: Required elective module, subject area "specialization" 628 M.Sc. Photonics: Required elective module
Frequency of offer (how often is the module offered?)	Every second semester (beginning in summer semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 1 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	Basics of ion trap physics; Paul and Penning traps; Cooling techniques, in particular laser cooling methods; Coherent manipulation of electronic and motional states; detection techniques; Application of ion traps for precision experiments: optical clocks, quantum logic spectroscopy, ion traps as a platform for quantum computing, high-resolution mass spectrometry, measurements of g-factors and magnetic moments
Intended learning outcomes	Understanding the concepts of Paul and Penning traps as well as the applied techniques; knowledge of the discussed precision experiments; ability to deepen knowledge independently through latest scientific literature
Prerequisites for admission to the module examination	50% of the points of the exercise sheets; active participation in the exercises by presenting own solutions and discussing content
Requirements for awarding credit points (type of examination)	Oral examination (100%)
Recommended reading	An up-to-date literature list will be announced at the beginning of the semester.
Language of instruction	English

generated 27.10.2025 Page 39 of 110

Modul PAFMO210 Machine Le	earning for Quantum Science
Module code	PAFMO210
Module title (German)	Machine Learning for Quantum Science
Module title (English)	Machine Learning for Quantum Science
Person responsible for the module	Dr. X. Gu
Prerequisites for admission to the module	None
Recommended or expected prior knowledge	
Type of module (compulsory module, required elective module, elective module)	528 M.Sc. Quantum Science and Technology: required elective module 128 M.Sc. Physics focus "Optics": required elective module 628 M.Sc. Photonics: required elective module
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Tutorial: 2 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 60 h 60 h
Content	Artificial intelligence has become as a powerful tool in quantum science, enabling researchers to simulate complex systems, optimize experimental procedures, and discover new ideas and experiments. This course introduces the principles and practice of applying artificial intelligence (AI) and machine learning (ML) techniques to quantum physics, providing students with both theoretical foundations and handson computational skills. Topics include: • Basic AI/ML techniques for physicists • Differentiable programming • Generative models and reinforcement learning • Quantum circuit optimization and design • Quantum parameter estimation and measurement strategies • Quantum experiments design and discovery • Interpretable AI in quantum physics

Page 40 of 110 generated 27.10.2025

Intended learning outcomes	 This course introduces and deepens students' understanding of artificial intelligence techniques applied to quantum information science. By actively participating in this course, students will: Develop both theoretical understanding and practical skills at the intersection of quantum science and artificial intelligence. Understand how artificial intelligence and machine learning can address challenges in quantum physics, such as quantum state estimation and experimental design. Gain hands-on experience implementing AI/ML methods in Python (using frameworks like PyTorch and JAX). Engage with current research literature to identify open questions and design AI systems for quantum tasks.
Prerequisites for admission to the module examination	none
Requirements for awarding credit points (type of examination)	Oral examination (100%)
Additional information on the module	
Recommended reading	 Students are encouraged to explore the following papers relevant to the course topics: Krenn, M. et al., Computer-inspired quantum experiments. Nat Rev Phys 2, 649–661 (2020) Krenn, M. et al., Artificial intelligence and machine learning for quantum technologies, Phys. Rev. A 107, 010101 (2023) Dawid, A. et al., Modern applications of machine learning in quantum sciences, arXiv:2204.04198 (2022) Acampora, G. et al., Quantum computing and artificial intelligence: status and perspectives, arXiv:2505.23860 (2025) A more detailed and regularly updated list of supplementary literature and resources will be provided at the beginning of the semester and throughout the course.
Language of instruction	English

generated 27.10.2025 Page 41 of 110

Modul PAFMO230 Nano Engir	neering
Module code	PAFMO230
Module title (German)	Nano Engineering
Module title (English)	Nano Engineering
Person responsible for the module	Dr. S. Höppener, Prof. Dr. U. S. Schubert
Prerequisites for admission to the module	-
Recommended or expected prior knowledge	-
Prerequisite for what other modules	-
Type of module (compulsory module, required elective module, elective module)	128 M.Sc. Physics: Required elective module 628 M.Sc. Photonics: Required elective module 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 1 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	 Building with Molecules Self-organization and self-assembled coatings Chemically sensitive characterization methods Nanomaterials for optical applications Nanowires and nanoparticles Nanomaterials in optoelectronics Bottom-up synthesis strategies and nanolithography Polymers and self-healing coatings Molecular motors Controlled polymerization techniques

Page 42 of 110 generated 27.10.2025

Intended learning outcomes	A large diversity of nanomaterials can be efficiently produced by utilizing chemical synthesis strategies. The wide range of nanomaterials, i.e., nanoparticles, nanotubes, micelles, vesicles, nanostructured phase separated surface layers etc. opens on the one hand versatile possibilities to build functional systems, on the other hand also the large variety of techniques and processes to fabricate such systems is also difficult to overlook.
	Traditionally the communication in the interdisciplinary field of nanotechnology is difficult, as expertise from different research areas is combined. This course aims on the creation of a common basic level for communication and knowledge of researchers of different research fields and to highlight interdisciplinary approaches which lead to new fabrication strategies. The course includes basic chemical synthesis strategies, molecular self-assembly processes, chemical surface structuring, nanofabrication and surface chemistry to create a pool of knowledge to be able to use molecular building blocks in future research projects.
Prerequisites for admission to the module examination	-
Requirements for awarding credit points (type of examination)	Oral examination (100%)
Additional information on the module	
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

generated 27.10.2025 Page 43 of 110

Modul PAFMO250 Particles in	Strong Electromagnetic Fields
Module code	PAFMO250
Module title (German)	Particles in Strong Electromagnetic Fields
Module title (English)	Particles in Strong Electromagnetic Fields
Person responsible for the module	Prof. Dr. M. Zepf
Prerequisites for admission to the module	-
Recommended or expected prior knowledge	Fundamental knowledge on quantum mechanics und special relativity
Prerequisite for what other modules	-
Type of module (compulsory module, required elective module, elective module)	128 M.Sc. Physics: Required elective module 628 M.Sc. Photonics: Required elective module 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in summer semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 1 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	 Electrons in constant fields Electrons in electromagnetic pulses Radiation produced by particles in extreme motion Radiation reaction QED effects in strong laser fields
Intended learning outcomes	This course is devoted to the dynamics of charged particles in electromagnetic fields. Starting with motion of electrons in constant magnetic and electric fields, the course continues with the electron motion in electromagnetic pulses (i.e. laser pulses) of high strength (i.e. when laser pressure becomes dominant). Radiation produced by electrons in extreme motion will be calculated for several most important cases: synchrotron radiation, Thomson scattering, undulator radiation. Effects of radiation reaction on electron motion will be discussed. The last part of the course will briefly discuss the QED effects in strong laser fields: stochasticity in radiation reaction, pair production by focused laser pulses and QED cascades. Analytical framework will be complemented with the help of numerical calculations.

Page 44 of 110 generated 27.10.2025

Prerequisites for admission to the module examination	-
Requirements for awarding credit points (type of examination)	Presentation or oral Exam (100%)
Additional information on the module	128 M.Sc. Physics: Required elective module (Specialization in "Optics") If requested by the participants and agreed on with the responsible teacher, this module can be offered on-site and/or online (hybrid).
Recommended reading	A list of Literature and materials will be provided at the beginning of the semester.
Language of instruction	English

generated 27.10.2025 Page 45 of 110

Modul PAFMO260 Quantum C	Optics
Module code	PAFMO260
Module title (German)	Quantum Optics
Module title (English)	Quantum Optics
Person responsible for the module	Prof. Dr. T. Pertsch (FSU), Dr. F. Setzpfandt (FSU)
Prerequisites for admission to the module	-
Recommended or expected prior knowledge	Fundamental knowledge on quantum theory and theoretical optics
Prerequisite for what other modules	-
Type of module (compulsory module, required elective module, elective module)	828 MSc. Photon Science and Technology: Required Elective Course Specialization 128 M.Sc. Physics: Required elective module 628 M.Sc. Photonics: Required elective module 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in summer semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 1 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	 Basic introduction to quantum mechanics; Quantization of the free electromagnetic field; Non-classical states of light and their statistics; Experiments in quantum optics; Semi-classical and fully quantized light-matter interaction; Non-Linear optics.
Intended learning outcomes	The course will give a basic introduction into the theoretical description of quantized light and quantized light-matter interaction. The derived formalism is then used to examine the properties of quantized light and to understand a number of peculiar quantum optical effects. After active participation in the course, the students will be familiar with the basic concepts and phenomena of quantum optics and will be able to apply the derived formalism to other problems.

Page 46 of 110 generated 27.10.2025

Prerequisites for admission to the module examination	_
Requirements for awarding credit points (type of examination)	90 min written exam
Additional information on the module	;
Recommended reading	Grynberg / Aspect / Fabre "Introduction to Quantum Optics";Garrison / Chiao "Quantum Optics";
	Fox "Quantum Optics - An Introduction";
	Loudon "The Quantum Theory of Light";
	Bachor / Ralph "A Guide to Experiments in Quantum Optics".
Language of instruction	English

generated 27.10.2025 Page 47 of 110

Modul PAFMO261 Quantum C	computing
Module code	PAFMO261
Module title (German)	Quantum Computing
Module title (English)	Quantum Computing
Person responsible for the module	Dr. F. Steinlechner (FSU), Dr. F. Eilenberger (FSU), Prof. Dr. T. Pertsch (FSU)
Type of module (compulsory module, required elective module, elective module)	828 MSc. Photon Science and Technology: Required Elective Course Specialization 128 M.Sc. Physics focus "Optics": Required elective module 628 M.Sc. Photonics: Required elective module 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in summer semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 1 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	 Basic introduction to algorithms and computing The Qubit and entanglement thereof Basics of quantum algorithms Advanced quantum algorithms Implementation of QuBits and quantum computers Hands-on circuits

Page 48 of 110 generated 27.10.2025

Intended learning outcomes	
intended learning odicomes	After active participation in the course, the students will be familiar with the basic concepts of quantum computation and the implementation of quantum algorithms. They will be able to apply their knowledge in the assessment and creation of quantum algorithms and the development o quantum information systems.
	The intended learning outcome is to introduce the students to the basic usage of quantum bits for information processing. To provide further insight, the course will expand this concept on multipartite systems and introduce the concept of entanglement.
	In a further step we shall see how individual quantum operations tie together to create algorithms. Important algorithms, such as the quantum Fourier transformation, the algorithms of Shor and Grover will be discussed. To relate the abstract knowledge on quantum algorithms to practical applications, real-world implementations of quantum computers will be discussed.
Requirements for awarding credit points (type of examination)	90 min written exam
Additional information on the module	
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

generated 27.10.2025 Page 49 of 110

Modul PAFMO262 Quantum C	communicaton
Module code	PAFM0262
Module title (German)	Quantum Communicaton
Module title (English)	Quantum Communicaton
Person responsible for the module	Dr. F. Steinlechner (FSU), Dr. F. Eilenberger (FSU), Prof. Dr. A. Tünnermann (FSU)
Type of module (compulsory module, required elective module, elective module)	828 MSc. Photon Science and Technology: Required Elective Course Specialization 128 M.Sc. Physics focus "Optics": Required elective module 628 M.Sc. Photonics: Required elective module 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in summer semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 1 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	Basic introduction to quantum optics;
	 Quantum light sources; Encoding, transmission and detection of information with quantum light; Quantum communication and cryptography; Quantum communication networks; Outlook on Quantum metrology and Quantum imaging;
Intended learning outcomes	Goals: The course will give a basic introduction into the usage of quantum states of light for the exchange of generation of quantum light and schemes that leverage these states for the exchange of information, ranging from fundamental concepts and experiments to state of the art implementations for secure communication networks. The course will also give an outlook to aspects of Quantum metrology and imaging. After active participation in the course, the students will be familiar with the basic concepts and phenomena of quantum information exchange and some aspects related to the practical implementation thereof. They will be able to apply their knowledge in the assessment and setup of experiments and devices for applications of quantum information processing.

Page 50 of 110 generated 27.10.2025

Requirements for awarding credit points (type of examination)	Written or oral examination (100%) The form of the exam will be announced at the beginning of the semester.
Additional information on the module	
Recommended reading	
Language of instruction	English

generated 27.10.2025 Page 51 of 110

Modul PAFM0263 Quantum In	
Module code	PAFMO263
Module title (German)	Quantum Imaging and Sensing
Module title (English)	Quantum Imaging and Sensing
Person responsible for the module	Dr. M. Gräfe (FSU), Dr. F. Setzpfandt (FSU), Prof. Dr. A. Tünnermann (FSU
required elective module, elective module)	828 MSc. Photon Science and Technology: Required Elective Course Specialization 128 M.Sc. Physics focus "Optics": required elective module 628 M.Sc. Photonics: required elective module 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 1 h per week
ECTS credits	4 CP
, ,	120 h 45 h 75 h
Content	 Basic introduction to relevant concepts of quantumoptics Generation of photon pairs Fundamentals of two-photon interference Applications of two-photon interference Optical quantum metrology Ghost Imaging Quantum microscopy
	Goals: The course will give a basic introduction into the usage of quantum light, in particular photon pairs, for imaging and sensing. To this end, many basic concepts and applications will be introduced and discussed. Furthermore, students will learn how to mathematically describe quantum sensing schemes in order to understand and predict their propreties. After active participation in the course, the students will be familiar with the basic concepts and phenomena of quantum imaging and sensing
Requirements for awarding credit points (type of examination)	and will be able to apply the derived formalism to similar problems. Written or oral examination (100%) The form of the exam will be announced at the beginning of the semester

Page 52 of 110 generated 27.10.2025

Recommended reading	A list of literature and materials will be provided at the beginning of the semester
Language of instruction	English

generated 27.10.2025 Page 53 of 110

Modul PAFMO265 Semicondu	ictor Nanomaterials
Module code	PAFMO265
Module title (German)	Semiconductor Nanomaterials
Module title (English)	Semiconductor Nanomaterials
Person responsible for the module	Prof. Dr. Isabelle Staude (FSU)
Prerequisites for admission to the module	-
Recommended or expected prior knowledge	Fundamental knowledge on modern optics and condensed matter physics
Prerequisite for what other modules	-
Type of module (compulsory module, required elective module, elective module)	828 MSc. Photon Science and Technology: Required Elective Course Specialization 128 M.Sc. Physics: Required elective module 628 M.Sc. Photonics: Required elective module 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in summer semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 1 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	 The course will cover the following topics: Review of fundamentals of semiconductors Optical and optoelectronic properties of semiconductors Effects of quantum confinement Photonic effects in semiconductor nanomaterials Physical implementations of semiconductor nanomaterials, including epitaxial structures, semiconductor quantum dots and quantum wires Advanced topics of current research, including 2D semiconductors and hybrid nanosystems

Page 54 of 110 generated 27.10.2025

Intended learning outcomes	This course aims to convey a fundamental understanding of the physics governing the optical and optoelectronic properties of semiconductor nanomaterials. First, the fundamental optical and optoelectronic properties of bulk semiconductors are reviewed, deepening and extending previously obtained knowledge in condensed matter physics. The students will then learn about the effects of quantum confinement in semiconductor systems in one, two or three spatial dimensions, as well as about photonic effects in nanostructured semiconductors. Finally, several relevant examples of semiconductor nanomaterial systems and their applications in photonics are discussed in detail. After successful completion of the course, the students should be capable of understanding present research directions and of solving basic problems within this field of research.
Prerequisites for admission to the module examination	-
Requirements for awarding credit points (type of examination)	Written examination at the end of the semester and oral presentation on a current research topic
Additional information on the module	,
Recommended reading	P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, Springer 2010 C. F. Klingshirn, Semiconductor Optics, Springer 1995 M. Fox, Quantum Optics – An Introduction, Oxford University Press 2006
Language of instruction	English

generated 27.10.2025 Page 55 of 110

Modul PAFMO270 Theory of N	Nonlinear Optics
Module code	PAFM0270
Module title (German)	Theory of Nonlinear Optics
Module title (English)	Theory of Nonlinear Optics
Person responsible for the module	Prof. Dr. U. Peschel (FSU)
Prerequisites for admission to the module	-
Recommended or expected prior knowledge	-
Prerequisite for what other modules	-
Type of module (compulsory module, required elective module, elective module)	828 MSc. Photon Science and Technology: Required Elective Course Specialization 128 M.Sc. Physics: Required elective module 628 M.Sc. Photonics: Required elective module 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in summer semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 1 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	 Types and symmetries of non-linear polarization; Non-Linear optics in waveguides; Solutions of non-linear evolution equations; Temporal and spatial solitons; Super continuum generation.
Intended learning outcomes	The course provides the theoretical background of non-linear optics and quantum optics.
Prerequisites for admission to the module examination	-
Requirements for awarding credit points (type of examination)	Written examination (100 %). Written examination (100 %). The final grade will be determined by the exercise performance (25%)and an oral exam (75%).
Additional information on the module	

Page 56 of 110 generated 27.10.2025

Recommended reading	 Agrawal, Govind P.: Contemporary non-linear optics; Moloney, Jerome V., Newell Alan C.: Non-Linear Optics; Sutherland, Richard Lee: Handbook of non-linear optics.
Language of instruction	English

generated 27.10.2025 Page 57 of 110

Modul PAFMP001 Advanced 0	Quantum Theory
Module code	PAFMP001
Module title (German)	Fortgeschrittene Quantentheorie
Module title (English)	Advanced Quantum Theory
Person responsible for the module	Prof. Dr. S. Bernuzzi, Prof. Dr. H. Gies
Prerequisites for admission to the module	none
Type of module (compulsory module, required elective module, elective module)	Compulsory module M.Sc. Physik 528 M.Sc. Quantum Science and Technology, required elective module, subject area "adjustment"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 4 h per week Exercise: 2 h per week
ECTS credits	8 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	240 h 90 h 150 h
Content	 many particle systems, identical particles, non-interacting particles, Thomas-Fermi and Hartree-Fock approximations addition of angular momenta, Clebsch-Gordan coefficients, selection rules time-dependent perturbation theory, Fermis golden rule scattering theory, potential scattering, partial waves, scattering of identical particles introduction to relativistic quantum mechanics, Poincare transformations, Klein-Gordon and Dirac equations, minimal coupling, non-relativistic approximation relativistic hydrogen atom, fine structure path integrals.
Intended learning outcomes	The course covers relevant facts about advanced quantum mechanics which are necessary for an understanding of quantum phenomena and their relevance in all areas of modern physics. The students will learn methods for describing and modeling nonrelativistic and relativistic quantum systems. They will aquire skills to solve demanding problems and deal with complex physical systems.
Prerequisites for admission to the module examination	Course exercises to be submitted; further information on the kind and scope will be given at the beginning of each semester.

Page 58 of 110 generated 27.10.2025

Requirements for awarding credit points (type of examination)	Written or oral examination (100%) The form of the exam will be announced at the beginning of the semester.
Recommended reading	e.g. F. Schwabl; W. Nolting; Straumann; K. Gottfried und T.M. Yan; C. Cohen-Tannoudji.
Language of instruction	German, English

generated 27.10.2025 Page 59 of 110

Modul PAFMP003 Advanced S	Seminar Gravitational and Quantum Physics
Module code	PAFMP003
Module title (German)	Oberseminar Gravitations- und Quantentheorie
Module title (English)	Advanced Seminar Gravitational and Quantum Physics
Person responsible for the module	Prof. Dr. B. Brügmann, Prof. Dr. H. Gies
Prerequisites for admission to the module	none
Recommended or expected prior knowledge	Basic knowledge in Gravitational and/or Quantum Theory
Type of module (compulsory module, required elective module, elective module)	128 M.Sc. Physics Required elective module focus "Quantum and Gravitational Theory" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in summer semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Seminar: 2 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 30 h 90 h
Content	 Systematic development of specialized knowledge in the fields of gravitation theory and quantum theory; Presentation and discussion of current problems of gravitation theory and quantum theory.
Intended learning outcomes	 Familarisation with a specific topic in gravitation or quantum theory; Independent discovery and evaluation of scientific literature; Presentation of scientific facts in form of a talk; In-depth knowledge in the fields of gravitation theory and quantum theory.
Prerequisites for admission to the module examination	Active participation in the seminar discussions
Requirements for awarding credit points (type of examination)	Scientific Talk (100%)
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

Page 60 of 110 generated 27.10.2025

Modul PAFMQ001 Fundament	tals of Quantum information
Module code	PAFMQ001
Module title (German)	Grundlagen der Quanteninformation
Module title (English)	Fundamentals of Quantum information
Person responsible for the module	Prof. Dr. F. Steinlechner, PD Dr. F. Setzpfandt, Prof. Dr. M. Gärttner
Prerequisites for admission to the module	none
Recommended or expected prior knowledge	none
Type of module (compulsory module, required elective module, elective module)	528 M.Sc. Quantum Science and Technology, compulsory module ("essentials") 128 M.Sc. Physics: required elective module spezialisation "optics" 628 M.Sc. Photonics: required elective module
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 4 h per week Exercise: 2 h per week
ECTS credits	8 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	240 h 90 h 150 h
Content	Concepts of quantum information processing
	 introduction to fundamental concepts and the basic formalism entanglement application examples entanglement characterization
	 Hardware for quantum information processing brief review of key physical concepts and applications basic hardware requirements for information processing
	optical qubits, gates
Intended learning outcomes	Understanding of fundamental properties of quantum states, their applications and how to characterize them. Knowledge about basic hardware requirements for quantum information processing and example implementations.
Prerequisites for admission to the module examination	Solution of exercise sheets (Scope to be announced at the beginning of the module).

generated 27.10.2025 Page 61 of 110

Requirements for awarding credit points (type of examination)	Written examination
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

Page 62 of 110 generated 27.10.2025

Modul PAFMQ002 Advanced 0	Quantum Information
Module code	PAFMQ002
Module title (German)	Fortgeschrittene Quanteninformationstheorie und -hardware
Module title (English)	Advanced Quantum Information
Person responsible for the module	Prof. Dr. F. Steinlechner, PD Dr. F. Setzpfandt, Prof. Dr. M. Gärttner
Recommended or expected prior knowledge	Content of "Introduction to Quantum Information"
Type of module (compulsory module, required elective module, elective module)	528 M.Sc. Quantum Science and Technology, required elective module, subject area "essentials" 128 M.Sc. Physics: required elective module spezialization "optics" 628 M.Sc. Photonics: required elective module
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 4 h per week Exercise: 2 h per week
ECTS credits	8 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	240 h 90 h 150 h
Content	 Hardware for quantum information processing superconducting qubits, gates, control, manipulation, readout light-matter interaction semiconductor qubits (quantum dots, defects) atoms / quantum Gases foundations of quantum sensing (sensitivity, noise, standard quantum limit) Optomechanics Concepts of quantum information processing decoherence quantum error correction many-body entanglement advanced concepts
Intended learning outcomes	Knowledge of all eminent concepts for implementing quantum-information systems. Understanding advanced concepts that enable treatment of non-ideal quantum systems.
Prerequisites for admission to the module examination	Solution of exercise sheets (Scope to be announced at the beginning of the module).

generated 27.10.2025 Page 63 of 110

Requirements for awarding credit points (type of examination)	Written examination.
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

Page 64 of 110 generated 27.10.2025

Modul PAFMQ003 Introductio	n to Quantum physics
Module code	PAFMQ003
Module title (German)	Einführung in die Quantenphysik
Module title (English)	Introduction to Quantum physics
Person responsible for the module	PD Dr. F. Setzpfandt
Prerequisites for admission to the module	none
Recommended or expected prior knowledge	none
Type of module (compulsory module, required elective module, elective module)	528 M.Sc Quantum Science and Technology: required elective module, subject area "adjustment"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 4 h per week Exercise: 2 h per week
ECTS credits	8 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	240 h 90 h 150 h
Content	relevant core concepts of atomic and solid-state physics, basics of light-matter-interaction, basics of superconductivity, basics of quantum theory, quantum harmonic oscillator, perturbation theory, pictures of quantum mechanics
Intended learning outcomes	Understanding of basic concepts and methods for the description of physical systems within the framework of quantum theory. Ability to independently solve simple tasks in the area of quantum physics.
Prerequisites for admission to the module examination	Solution of exercise sheets (Scope to be announced at the beginning of the module).
Requirements for awarding credit points (type of examination)	Written examination
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

generated 27.10.2025 Page 65 of 110

Modul PAFMQ007 Quantum L	aboratory
Module code	PAFMQ007
Module title (German)	Quantum Laboratory
Module title (English)	Quantum Laboratory
Person responsible for the module	PD Dr. F. Setzpfandt
Type of module (compulsory module, required elective module, elective module)	528 M.Sc. Quantum Science and Technology, required elective module, subject area "practical research training" 128 M.Sc. Physics: requied elective module
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Practical course
ECTS credits	6 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	180 h 60 h 120 h
Content	Practical training in experimental quantum technologies. Topics cover a broad range from quantum-state generation and characterization, the demonstration of fundamental quantum effects to applications in communication and metrology.
Intended learning outcomes	 Introduction to experimental techniques in quantum technologies. Planning and preparation of a scientific measuring task. Carrying out scientific lab in optics together with a research team. Preparation of a scientific report.
Requirements for awarding credit points (type of examination)	Lab mark (100%) Consists of acceptance tests and written reports
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

Page 66 of 110 generated 27.10.2025

Modul DAEMOOOO Internahin	
Modul PAFMQ008 Internship	
Module code	PAFMQ008
Module title (German)	Internship
Module title (English)	Internship
Person responsible for the module	PD Dr. F. Setzpfandt
Prerequisites for admission to the module	Completion of module "Quantum Laboratory"
Type of module (compulsory module, required elective module, elective module)	528 M.Sc. Quantum Science and Technology, required elective module, subject area "practical research training"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in summer semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Practical course 300 h Depending on the topic, the workload should be distributed approximately as: • 50 h introduction to research topic (literature study,) • 190 h research work (in the lab for experimental topics, at computer, etc. for theoretical topics) • 50 h preparation of the final report 10 h presentation of final results and preparation for this
ECTS credits	10 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	300 h - h - h
Content	Internship in industry or a research laboratory
Intended learning outcomes	 Carrying out scientific work together with a research team Preparation of a written scientific report Presentation of results in an oral presentation
Requirements for awarding credit points (type of examination)	Lab mark (100%) Consists of a written report (approximately 15-20 pages) and a final presentation (10-20 minutes) with subsequent discussion The final grade will be determined based on the research performance, the final report, and the presentation.
Recommended reading	specifically defined by the instructor of the internship
Language of instruction	English

generated 27.10.2025 Page 67 of 110

Modul PAFMQ009 Research P	roject
Module code	PAFMQ009
Module title (German)	Research Project
Module title (English)	Research Project
Person responsible for the module	PD Dr. F. Setzpfandt
Prerequisites for admission to the module	Completion of module "Internship"
Type of module (compulsory module, required elective module, elective module)	528 M.Sc. Quantum Science and Technology, required elective module, subject area "practical research training"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Practical course 540 h Depending on the topic, the workload should be distributed approximately as: • 150 h introduction to research topic (literature study,) • 270 h research work (in the lab for experimental topics, at computer, etc. for theoretical topics) • 100 h preparation of the final report
ECTS credits	18 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	540 h - h - h
Content	Internship in a research laboratory
Intended learning outcomes	 Carrying out scientific work together with a research team Preparation of a written scientific report Presentation of results in an oral presentation
Requirements for awarding credit points (type of examination)	Lab mark (100%) Consists of a written report (approximately 20-30 pages) and a final presentation (15-25 minutes) with subsequent discussion The final grade will be determined based on the research performance, the final report, and the presentation
Recommended reading	specifically defined by the instructor of the internship
Language of instruction	English

Page 68 of 110 generated 27.10.2025

Modul PAFMQ100 Molecular of	quantum mechanics / quantum chemistry l
Module code	PAFMQ100
Module title (German)	Molecular quantum mechanics / quantum chemistry I
Module title (English)	Molecular quantum mechanics / quantum chemistry I
Person responsible for the module	Prof. Dr. S. Gräfe, Dr. A. Croy
Recommended or expected prior knowledge	Module "Physical chemistry" or equivalent
Type of module (compulsory module, required elective module, elective module)	528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in summer semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	2 hour lecture, 1 hour excercise per week
ECTS credits	8 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	In lecture and tutorial, students are taught basics and concepts describing the dynamics of (open) quantum systems (wave packets, density matrix, quantum master equations). Furthermore, aspects of multi-particle physics of molecules are covered, i.e. e.g. multi-electron wave functions, the Hartree-Fock approximation and the role of basis sets.
Intended learning outcomes	Become familiar with the fundamentals of open quantum systems and "ab initio" methods for performing quantum chemical calculations with respect to molecular and nanoscale systems.
Requirements for awarding credit points (type of examination)	Oral or written examination on the material taught in lecture and seminars.
Additional information on the module	
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

generated 27.10.2025 Page 69 of 110

Modul PAFMQ101 Molecular of	quantum mechanics / quantum chemistry II
Module code	PAFMQ101
Module title (German)	Molecular quantum mechanics / quantum chemistry II
Module title (English)	Molecular quantum mechanics / quantum chemistry II
Person responsible for the module	Prof. Dr. S. Gräfe; Dr. A. Croy
Recommended or expected prior knowledge	Module "Molecular quantum mechanics / quantum chemistry I" or equivalent
Type of module (compulsory module, required elective module, elective module)	528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization" 128 M.Sc. Physics: required elective module
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	2 hour lecture 1 hour excercise per week
ECTS credits	8 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	Building on Module PAFMQ100, in-depth and advanced knowledge of advanced methods of theoretical chemistry is taught. This includes (time-dependent) density functional theory as well as an introduction to numerical methods, concepts and algorithms for the description of molecular systems that exchange energy and/or charge with their environment.
Intended learning outcomes	Familiarization with advanced methods and concepts, such as DFT/TDDFT. Understanding numerical methods, concepts and algorithms for describing open quantum systems and their application to molecular and nanoscale systems.
Requirements for awarding credit points (type of examination)	Oral or written examination on the material taught in lecture and seminars.
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

Page 70 of 110 generated 27.10.2025

Modul PAFMQ900 Topics of C	Current Research: Quantum Information I
Module code	PAFMQ900
Module title (German)	Topics of Current Research: Quantum Information I
Module title (English)	Topics of Current Research: Quantum Information I
Person responsible for the module	PD Dr. F. Setzpfandt
Type of module (compulsory module, required elective module, elective module)	128 M.Sc.Physics, Required elective module specialization "Gravitation and Quantum Theory" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 1 h per week
ECTS credits	8 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	240 h 90 h 150 h
Content	Advanced topics of current research in Quantum information and quantum technologies
Intended learning outcomes	 Introduction into a field of current research as a basis for further studyand research in this field; Independent solution of exercise problems; Ability to acquire further knowledge by independent literature studies.
Prerequisites for admission to the module examination	further information on the kind and scope will be given at the beginning of each semester.
Requirements for awarding credit points (type of examination)	Written or Oral examination (100%) Will be announced at the beginning of each semester
Recommended reading	A list of Literature and materials will be provided at the beginning of the semester.
Language of instruction	English

generated 27.10.2025 Page 71 of 110

Modul PAFMQ901 Topics of C	current Research: Quantum Information I
Module code	PAFMQ901
Module title (German)	Topics of Current Research: Quantum Information II
Module title (English)	Topics of Current Research: Quantum Information I
Person responsible for the module	PD Dr. F. Setzpfandt
Type of module (compulsory module, required elective module, elective module)	528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	At irregular intervals
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 1 h per week
ECTS credits	8 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	Advanced topics of current research in Quantum information and quantum technologies
Intended learning outcomes	 Introduction into a field of current research as a basis for further studyand research in this field; Independent solution of exercise problems; Ability to acquire further knowledge by independent literature studies.
Prerequisites for admission to the module examination	further information on the kind and scope will be given at the beginning of each semester.
Requirements for awarding credit points (type of examination)	Written or Oral examination (100%) Will be announced at the beginning of each semester
Recommended reading	A list of Literature and materials will be provided at the beginning of the semester.
Language of instruction	English

Page 72 of 110 generated 27.10.2025

Modul PAFMQ999 Extracurric	ular qualifications
Module code	PAFMQ999
Module title (German)	Außerfachliche Qualifikationen
Module title (English)	Extracurricular qualifications
Person responsible for the module	PD Dr. F. Setzpfandt
Type of module (compulsory module, required elective module, elective module)	528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every semester
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 1 h per week
ECTS credits	8 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	Knowledge and methods that build personalities beyond the field of quantum science and technologies.
Intended learning outcomes	 qualifications that support careers after finishing a university degree an improved ability for international students to have a successful career in Germany an awareness for other fields of research and the ability to connect them to the research field of quantum science and technology
Prerequisites for admission to the module examination	further information on the kind and scope will be given at the beginning of each semester.
Requirements for awarding credit points (type of examination)	Written or Oral examination (100%) Will be announced at the beginning of each semester
Recommended reading	A list of Literature and materials will be provided at the beginning of the semester.
Language of instruction	English

generated 27.10.2025 Page 73 of 110

Modul PAFMT001 General Rel	ativity
Module code	PAFMT001
Module title (German)	Allgemeine Relativitätstheorie
Module title (English)	General Relativity
Person responsible for the module	Prof. Dr. B. Brügmann
Prerequisites for admission to the module	none
Recommended or expected prior knowledge	Module Relativistic Physics or equvivalent
Type of module (compulsory module, required elective module, elective module)	128 M.Sc.Physics, Required elective module specialization "Gravitation and Quantum Theory" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 4 h per week Exercise: 2 h per week
ECTS credits	8 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	240 h 90 h 150 h
Content	 Fundamentals of general relativity Einstein field equations Newtonian approximation Gravitational waves Black holes Cosmology and the big bang
Intended learning outcomes	 Obtain knowledge of relativistic gravitational physics Develop problem solving skills for astrophysical problems in the regime of high velocities and strong gravitational fields
Prerequisites for admission to the module examination	Course exercises to be submitted; further information on the kind and scope will be given at the beginning of each semester.
Requirements for awarding credit points (type of examination)	Written or oral examination (100%) The form of the exam will be announced at the beginning of the semester.
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.

Page 74 of 110 generated 27.10.2025

Language of instruction

generated 27.10.2025 Page 75 of 110

Modul PAFMT002 Particles ar	nd Fields
Module code	PAFMT002
Module title (German)	Teilchen und Felder
Module title (English)	Particles and Fields
Person responsible for the module	Prof. Dr. H. Gies
Prerequisites for admission to the module	none
Type of module (compulsory module, required elective module, elective module)	128 M.Sc.Physics, Required elective module specialization "Gravitation and Quantum Theory" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 2 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 60 h 60 h
Content	 Introduction: examples of classical field theories aspects of classical field theory: Lagrange and Hamilton formalism, Noether theorem and charges non-linear scalar field theories: O(N) models, spontaneous symmetry breaking, Goldstone theorem fields / particles as representations of the Lorentz group: classification of representations, spinors, construction of free theories interactive theories: Yukawa models, QED, Abelian Higgs models current aspects of field theories in particle physics
Intended learning outcomes	 preparation for quantum field theory in the 2nd M.Sc. Semester comprehension of concepts and methods, and acquiring technical skills for the theoretical treatment of field theories with applications in particle physics
Prerequisites for admission to the module examination	Course exercises to be submitted; further information on the kind and scope will be given at the beginning of each semester.
Requirements for awarding credit points (type of examination)	Written or oral examination or paper (100%) The form of the exam will be announced at the beginning of the semester.
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.

Page 76 of 110 generated 27.10.2025

Language of instruction	English	
-------------------------	---------	--

generated 27.10.2025 Page 77 of 110

Modul PAFMT003 Quantum F	ield Theory
Module code	PAFMT003
Module title (German)	Quantenfeldtheorie
Module title (English)	Quantum Field Theory
Person responsible for the module	Prof. Dr. M. Ammon
Prerequisites for admission to the module	none
Recommended or expected prior knowledge	Module Particles and Fields or equivalent
Type of module (compulsory module, required elective module, elective module)	128 M.Sc.Physics, Required elective module specialization "Gravitation and Quantum Theory" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in summer semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 4 h per week Exercise: 2 h per week
ECTS credits	8 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	240 h 90 h 150 h
Content	 Principles of relativistic quantum field theories Quantization of Klein-Gordon, Dirac, and electromagnetic fields Perturbation theory and Feynman diagrams S matrix and cross sections Functional integrals effective effects and correlation functions Regularization and renormalization
Intended learning outcomes	 Teaching the basic principles and structures of quantum field theories Obtaining abilities to describe the interactions of elementary particles and to calculate important scattering and decay processes.
Prerequisites for admission to the module examination	Course exercises to be submitted; further information on the kind and scope will be given at the beginning of each semester.
Requirements for awarding credit points (type of examination)	Written or oral examination (100%) The form of the exam will be announced at the beginning of the semester.
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.

Page 78 of 110 generated 27.10.2025

Language of instruction

generated 27.10.2025 Page 79 of 110

Modul PAFMT010 Advanced (Quantum Field Theory
Module code	PAFMT010
Module title (German)	Fortgeschrittene Quantenfeldtheorie
Module title (English)	Advanced Quantum Field Theory
Person responsible for the module	Prof. Dr. M. Ammon
Prerequisites for admission to the module	none
Recommended or expected prior knowledge	Modules Particles and Fields and Quantum Field Theory or equivalent
Type of module (compulsory module, required elective module, elective module)	128 M.Sc.Physics, Required elective module specialization "Gravitation and Quantum Theory" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second year (beginning in summer semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 4 h per week Exercise: 2 h per week
ECTS credits	8 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	240 h 90 h 150 h
Content	 Anomalies in Quantum Field Theory (QFT); QFT at finite temperature and density; (Quantum) Phase Transitions; Near- and non-equilibrium dynamics of QFT; Introduction to conformal field theory; Topological objects in quantum field theory.
Intended learning outcomes	Impart thorough knowledge of advanced methods in quantum field theory
Prerequisites for admission to the module examination	Will be announced in the first lecture. Usually 50 per cent of points of the examples sheets or presenting one original paper.
Requirements for awarding credit points (type of examination)	Will be announced in the first lecture: usually oral exam at the end of the semester
Language of instruction	English
Language of instruction	German, English

Page 80 of 110 generated 27.10.2025

Modul PAFMT011 Introductio	n to String Theory and AdS/CFT	
Module code	PAFMT011	
Module title (German)	Einführung in Stringtheorie und AdS/CFT	
Module title (English)	Introduction to String Theory and AdS/CFT	
Person responsible for the module	Prof. Dr. M. Ammon	
Prerequisites for admission to the module	none	
Recommended or expected prior knowledge	Modules Quantum Field Theory and General Relativity or equivalent	
Type of module (compulsory module, required elective module, elective module)	128 M.Sc.Physics, Required elective module specialization "Gravitation and Quantum Theory" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"	
Frequency of offer (how often is the module offered?)	At irregular intervals	
Duration of module	1 semester	
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 4 h per week Exercise: 2 h per week	
ECTS credits	8 CP	
Work load: - In-class studying - Independent studying (incl. preparations for examination)	240 h 90 h 150 h	
Content	Introduction to concepts of string theory and AdS/CFT correspondence, in particular: • relativistic bosonic string and its quantization • open strings and D-branes • aspects of conformal field theory • Polyakov path integral • scattering of strings • low energy effective action • dualities in string theory • compactification scenarios • introduction to AdS / CFT • main tests of AdS / CFT • extension and application of AdS / CFT	
Intended learning outcomes	Impart thorough knowledge of string theory and AdS/CFT duality	
Prerequisites for admission to the module examination	Course exercises to be submitted; further information on the kind and scope will be given at the beginning of each semester.	

generated 27.10.2025 Page 81 of 110

Requirements for awarding credit points (type of examination)	Written or oral examination (100%) The form of the exam will be announced at the beginning of the semester.
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

Page 82 of 110 generated 27.10.2025

Modul PAFMT012 The Standa	rd Model of Particle Physics
Module code	PAFMT012
Module title (German)	Das Standardmodell der Teilchenphysik
Module title (English)	The Standard Model of Particle Physics
Person responsible for the module	Prof. Dr. A. Wipf
Prerequisites for admission to the module	none
Recommended or expected prior knowledge	Module Quantum Field Theory or equivalent
Type of module (compulsory module, required elective module, elective module)	128 M.Sc.Physics, Required elective module specialization "Gravitation and Quantum Theory" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 2 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 60 h 60 h
Content	Overview of the standard model of particle physics including: • symmetries, quantum electrodynamics • strong interaction • the quark model and quantum chromodynamics • hadrons and asymptotic freedom • weak interactions and the Higgs effect • scattering experiments • limits of the Standard Model
Intended learning outcomes	Impart thorough knowledge of particle physics phenomenology and its fundamental concepts.
Prerequisites for admission to the module examination	Course exercises to be submitted; further information on the kind and scope will be given at the beginning of each semester.
Requirements for awarding credit points (type of examination)	Oral examination (100%)
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.

generated 27.10.2025 Page 83 of 110

Language of instruction English

Page 84 of 110 generated 27.10.2025

Modul PAFMT013 Gauge Theo	ories
Module code	PAFMT013
Module title (German)	Eichtheorien
Module title (English)	Gauge Theories
Person responsible for the module	Prof. Dr. H. Gies
Prerequisites for admission to the module	none
Recommended or expected prior knowledge	Module Quantum Field Theory or equivalent
Type of module (compulsory module, required elective module, elective module)	128 M.Sc.Physics, Required elective module specialization "Gravitation and Quantum Theory" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	At irregular intervals
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 2 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 60 h 60 h
Content	 gauge symmetry classical Yang-Mills theory quantization of gauge theories / BRST formalism / Gribov problem perturbation theory semiclassical expansions topological configurations confinement criteria and scenarios
Intended learning outcomes	Comprehension of concepts and methods, and acquiring technical skills for the theoretical treatment of gauge theories with applications in particle physics
Prerequisites for admission to the module examination	Course exercises to be submitted; further information on the kind and scope will be given at the beginning of each semester or term paper
Requirements for awarding credit points (type of examination)	Written or oral examination (100%) The form of the exam will be announced at the beginning of the semester.
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.

generated 27.10.2025 Page 85 of 110

Language of instruction

German, English

Page 86 of 110 generated 27.10.2025

Modul PAFMT014 Lattice Field	d Theory
Module code	PAFMT014
Module title (German)	Quantenfeldtheorien auf dem Gitter
Module title (English)	Lattice Field Theory
Person responsible for the module	Prof. Dr. A. Wipf
Prerequisites for admission to the module	none
Recommended or expected prior knowledge	Module Quantum Field Theory or equivalent
Type of module (compulsory module, required elective module, elective module)	128 M.Sc.Physics, Required elective module specialization "Gravitation and Quantum Theory" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	At irregular intervals
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 4 h per week Exercise: 2 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 135 h
Content	 Path integral for quantum field theories Euclidean formulation and quantum field theories in thermal equilibrium Lattice field theory as spin models in Statistical Physics rigorous results and approximations stochastic methods, Monte Carlo simulations renormalization group, critical phenomena gauge theories on a space-time grid Quantumchromodynamic on a lattice
Intended learning outcomes	 The course covers theoretical concepts and methods necessary to understand (discretized) Quantum Field Theories. The students will learn stochastical and numerical methods to simulate spin models and lattice field theories. They will aquire skills to independently develop numerical algorithms to calculate observables in Elementary Particle Physics, Quantum Field Theory and Statistical Physics.
Prerequisites for admission to the module examination	Course exercises to be submitted; further information on the kind and scope will be given at the beginning of each semester.

generated 27.10.2025 Page 87 of 110

Requirements for awarding credit points (type of examination)	Written or oral examination (100%) The form of the exam will be announced at the beginning of the semester.
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

Page 88 of 110 generated 27.10.2025

Modul PAFMT015 Computation	onal Quantum Physics
Module code	PAFMT015
Module title (German)	Quantenphysik mit dem Rechner
Module title (English)	Computational Quantum Physics
Person responsible for the module	Prof. Dr. S. Fritzsche
Prerequisites for admission to the module	none
Recommended or expected prior knowledge	Module Theoretical Mechanics, Electrodynamics and Quantum Theory or equivalent
Type of module (compulsory module, required elective module, elective module)	128 B.Sc. Physics, Required elective module 128 M.Sc.Physics, Required elective module specialization "Gravitation and Quantum Theory" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	At irregular intervals
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 2 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 60 h 60 h
Content	 Coulomb problem; particles with spin; qubits, quantum registers and quantum gates; representation of pure and mixed states (Bloch sphere); composite systems, indistinguishable particles; Hartree-Fock method; Coupling of angular momenta.
Intended learning outcomes	 Learning computer algebraic and numerical methods in the description of simple quantum models; Ability to independently solve simple models and tasks, formulate pseudo-code and deal with computer algebra systems more efficiently
Prerequisites for admission to the module examination	Course exercises to be submitted; further information on the kind and scope will be given at the beginning of each semester.

generated 27.10.2025 Page 89 of 110

Requirements for awarding credit points (type of examination)	Written examination or paper (100%) The form of the exam will be announced at the beginning of the semester.
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	German, English

Page 90 of 110 generated 27.10.2025

Modul PAFMT016 Symmetries	s in Physics
Module code	PAFMT016
Module title (German)	Symmetrien in der Physik
Module title (English)	Symmetries in Physics
Person responsible for the module	Prof. Dr. A. Wipf
Prerequisites for admission to the module	none
Recommended or expected prior knowledge	Modules Theoretical Mechanics und Quantum Mechanics or equivalent
Type of module (compulsory module, required elective module, elective module)	128 B.Sc. Physics Required elective module 128 M.Sc.Physics, Required elective module specialization "Gravitation and Quantum Theory" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second year (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 2 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 60 h 60 h
Content	 symmetries and groups space and space-time symmetries conserved currents and charges discrete groups and continuous Lie-groups representations of groups, theory of characters, reductions of representation invariant integration on Lie-Groups Lie-algebras and their representations classification of semi-simple Lie-algebras selected application of group theory and representation theory in solid state physics, atomic and molecular physics, quantum field theory and particle physics.

generated 27.10.2025 Page 91 of 110

Intended learning outcomes	 The course covers theoretical concepts of discrete and continuous groups, Lie-algebras and their representations with relevant applications in physics The students will learn how to exploit symmetry principles to simplify or even solve problems in all branches of physics where symmetry principles play a role
Prerequisites for admission to the module examination	Course exercises to be submitted; further information on the kind and scope will be given at the beginning of each semester.
Requirements for awarding credit points (type of examination)	Written or oral examination (100%) The form of the exam will be announced at the beginning of the semester.
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	German, English

Page 92 of 110 generated 27.10.2025

Modul PAFMT017 Atomic The	Modul PAFMT017 Atomic Theory	
Module code	PAFMT017	
Module title (German)	Theoretische Atomphysik	
Module title (English)	Atomic Theory	
Person responsible for the module	Prof. Dr. S. Fritzsche	
Prerequisites for admission to the module	none	
Recommended or expected prior knowledge	Module Quantum Theory or equivalent	
Type of module (compulsory module, required elective module, elective module)	128 B.Sc. Physics Required elective module 128 M.Sc.Physics, Required elective module specialization "Gravitation and Quantum Theory" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"	
Frequency of offer (how often is the module offered?)	At irregular intervals	
Duration of module	1 semester	
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 4 h per week Exercise: 2 h per week	
ECTS credits	8 CP	
Work load: - In-class studying - Independent studying (incl. preparations for examination)	240 h 90 h 150 h	
Content	 Short review of hydrogenic atoms Independent-particle model & Hartree-Fock theory Interaction with the radiation field Correlated many-body theory Atomic collision theory Basics of the density matrix theory Atoms and forces in (intense) light fields Laser cooling and trapping; ions traps Rotating-wave approximation 	
Intended learning outcomes	Learning the basics of atomic structure and atomic collision processes.	
Prerequisites for admission to the module examination	Course exercises to be submitted; further information on the kind and scope will be given at the beginning of each semester.	
Requirements for awarding credit points (type of examination)	Written or oral examination (100%) The form of the exam will be announced at the beginning of the semester.	

generated 27.10.2025 Page 93 of 110

Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

Page 94 of 110 generated 27.10.2025

Modul PAFMT018 Physics of	the Quantum Vacuum in Strong Fields
Module code	PAFMT018
Module title (German)	Physik des Quantenvakuums in starken Feldern
Module title (English)	Physics of the Quantum Vacuum in Strong Fields
Person responsible for the module	Prof. Dr. H. Gies
Prerequisites for admission to the module	none
Recommended or expected prior knowledge	Module Quantum Field Theory or equivalent
Type of module (compulsory module, required elective module, elective module)	128 M.Sc.Physics, Required elective module specialization "Gravitation and Quantum Theory" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	At irregular intervals
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 2 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 60 h 60 h
Content	 Theoretical foundations of quantum electrodynamics (QED) in strong electromagnetic fields; Derivation of elementary signatures of the strong field QED; Discussion of proposals for their demonstration with current experimental methods.
Intended learning outcomes	Imparting concepts and methods and gaining the skills to deal with quantum electrodynamics issues in strong electromagnetic fields.
Prerequisites for admission to the module examination	Course exercises to be submitted; further information on the kind and scope will be given at the beginning of each semester. or term paper
Requirements for awarding credit points (type of examination)	Written or oral examination (100%) The form of the exam will be announced at the beginning of the semester.
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

generated 27.10.2025 Page 95 of 110

Modul PAFMT019 Supersymn	netry
Module code	PAFMT019
Module title (German)	Supersymmetrie
Module title (English)	Supersymmetry
Person responsible for the module	Prof. Dr. A. Wipf
Prerequisites for admission to the module	none
Recommended or expected prior knowledge	Module Quantum Field Theory or equvivalent
Type of module (compulsory module, required elective module, elective module)	128 M.Sc.Physics, Required elective module specialization "Gravitation and Quantum Theory" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	At irregular intervals
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 2 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 60 h 60 h
Content	 Supersymmetric quantum mechanics symmetries and spinors Wess Zumino models Supersymmetry algebra and representations Superspace and superfields supersymmetric Yang-Mills theories
Intended learning outcomes	 The students will learn the structure and properties of supersymmetric theories and the basics for understanding developments in particle physics and string theory. They will aquire skills to calculate simple processes in supersymmetric theories.
Prerequisites for admission to the module examination	Course exercises to be submitted; further information on the kind and scope will be given at the beginning of each semester.
Requirements for awarding credit points (type of examination)	Written or oral examination (100%) The form of the exam will be announced at the beginning of the semester.

Page 96 of 110 generated 27.10.2025

Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

generated 27.10.2025 Page 97 of 110

Modul PAFMT099 Topics of C	urrent Research: Quantum Field Theory
Module code	PAFMT099
Module title (German)	Themen der aktuellen Forschung: Gravitations- und Quantenfeldtheorie I
Module title (English)	Topics of Current Research: Quantum Field Theory
Person responsible for the module	Prof. Dr. M. Ammon
Prerequisites for admission to the module	none
Type of module (compulsory module, required elective module, elective module)	128 M.Sc.Physics, Required elective module specialization "Gravitation and Quantum Theory" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	At irregular intervals
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 2 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 60 h 60 h
Content	Further, in-depth topics in the field of quantum field theory;Topics from current areas of research.
Intended learning outcomes	 specialisation in a special field of quantum field theory; Independent handling of exercises; Ability of literature review.
Prerequisites for admission to the module examination	Course exercises to be submitted; further information on the kind and scope will be given at the beginning of each semester.
Requirements for awarding credit points (type of examination)	Written or oral examination (100%) The form of the exam will be announced at the beginning of the semester.
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

Page 98 of 110 generated 27.10.2025

Modul PAFMT202 Computation	onal Physics III
Module code	PAFMT202
Module title (German)	Computational Physics III
Module title (English)	Computational Physics III
Person responsible for the module	Prof. Dr. B. Brügmann
Prerequisites for admission to the module	none
Recommended or expected prior knowledge	Module Computational Physics or equivalent
Prerequisite for what other modules	
Type of module (compulsory module, required elective module, elective module)	128 M.Sc.Physics, Required elective module specialization "Gravitation and Quantum Theory" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 1 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	Partial Differential Equations: Fundamentals of differential equations Introduction to elliptic, parabolic and hyperbolic differential equations explicit and implicit procedures, stability analysis Poisson equation, diffusion equation, advection equation, wave equation, shocks; difference method, pseudo spectral methods, multiple grids
Intended learning outcomes	 Mastering the basics and methods of partial differential equations and machine learning in physics Ability to work independently on a numerical project
Prerequisites for admission to the module examination	Course exercises to be submitted; further information on the kind and scope will be given at the beginning of each semester.

generated 27.10.2025 Page 99 of 110

Requirements for awarding credit points (type of examination)	Written or oral examination or project (100%) The form of the exam will be announced at the beginning of the semester.
Additional information on the module	е
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

Page 100 of 110 generated 27.10.2025

Modul PAFMT206 Computation	onal Physics IV
Module code	PAFMT206
Module title (German)	Computational Physics IV
Module title (English)	Computational Physics IV
Person responsible for the module	Prof. Dr. B. Brügmann
Prerequisites for admission to the module	none
Recommended or expected prior knowledge	Modules Computational Physics I and II or equivalent
Type of module (compulsory module, required elective module, elective module)	128 M.Sc.Physics, Required elective module 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	At irregular intervals
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 1 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	 Machine Learning in Physics Basics of Machine Learning, Neural Networks and Deep Learning Sample Applications in Physics, Pattern Recognition, Time Series Analysis, Monte Carlo Methods
Intended learning outcomes	 Mastering the basics and methods of machine learning in physics Ability to work independently on a numerical project
Prerequisites for admission to the module examination	Processing of exercise sheets (kind and extend will be announced at the beginning of the semester)
Requirements for awarding credit points (type of examination)	Numerical project or written exam (100%); to be announced at the beginning of term
Recommended reading	A list of literature and materials will be provided at the beginning of the semester.
Language of instruction	English

generated 27.10.2025 Page 101 of 110

Modul PAFMT299 Topics of C	urrent Research: Gravitational Theory
Module code	PAFMT299
Module title (German)	Themen der aktuellen Forschung: Gravitations- und Quantentheorie II
Module title (English)	Topics of Current Research: Gravitational Theory
Person responsible for the module	Prof. Dr. B. Brügmann
Prerequisites for admission to the module	none
Type of module (compulsory module, required elective module, elective module)	128 M.Sc.Physics, Required elective module specialization "Gravitation and Quantum Theory" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	At irregular intervals
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week Exercise: 2 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 60 h 60 h
Content	 Further, in-depth topics in the field of gravitation theory; Topics from current areas of research.
Intended learning outcomes	 specialization in the special field of gravitation theory; Independent handling of exercises; Ability of literature review.
Prerequisites for admission to the module examination	Course exercises to be submitted; further information on the kind and scope will be given at the beginning of each semester.
Requirements for awarding credit points (type of examination)	Written or oral examination (100%) The form of the exam will be announced at the beginning of the semester.
Language of instruction	English

Page 102 of 110 generated 27.10.2025

Modul PAFMT300 Topics of C	Current Research: Gravitation- and Quantum Theory III
Module code	PAFMT300
Module title (German)	Themen der aktuellen Forschung: Gravitations- und Quantentheorie III
Module title (English)	Topics of Current Research: Gravitation- and Quantum Theory III
Person responsible for the module	Prof. Dr. M. Ammon, Prof. Dr. H. Gies, Prof. Dr. S. Flörchinger
Prerequisites for admission to the module	none
Recommended or expected prior knowledge	Module General Relativity PAFMT001 or equivalent
Type of module (compulsory module, required elective module, elective module)	128 M.Sc.Physics, Required elective module specialization "Gravitation and Quantum Theory" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization"
Frequency of offer (how often is the module offered?)	Every second semester (beginning in winter semester)
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Lecture: 2 h per week , Exercise: 1 h per week
ECTS credits	4 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	120 h 45 h 75 h
Content	The lecture will cover topics in the foundations of quantum mechanics and with relevance to the interplay between quantum physics and gravity with a focus on nonrelativistic laboratory quantum systems, specifically including topics of current research. In particular, the lecture will cover all or a selection of the following topics: • Quantum systems in the gravitational field of the earth, experiments and relativistic generalisation • Decoherence from spacetime fluctuations • The equivalence principle for quantum matter • Theoretical treatment of classically gravitating quantum systems and experimental distinction from a quantised gravitational field • Interpretations of quantum mechanics, the measurement problem, and the potential role of gravity in quantum wave function reduction

generated 27.10.2025 Page 103 of 110

Intended learning outcomes	The course should provide the participating students with a profound knowledge on the state of the art of the foundations of quantum mechanics and experimentally established facts on the interplay between gravitational and quantum physics. It should provide them with an overview of different ideas and approaches how to merge the theoretical description of quantum systems with the principles of general relativity, including obstacles and caveats. The advanced level course is ideally taken by Master students who already have some knowledge of general relativity but is open to interested students at all levels with a basic knowledge in quantum mechanics.
Prerequisites for admission to the module examination	None
Requirements for awarding credit points (type of examination)	Oral examination (100%)
Language of instruction	English

Page 104 of 110 generated 27.10.2025

Module title (German) Themen der aktuellen Forschung: Gravitations- und Quantentheorie IV Module title (English) Topics of Current Research: Gravitation- and Quantum Theory IV Person responsible for the module Recommended or expected prior knowledge Type of module (compulsory module, required elective module (compulsory module, and Quantum Theory) Type of module (compulsory module, required elective module specialization "Gravitation and Quantum Theory" 528 M.S.C. Quantum Science and Technology, required elective module, subject area "specialization" Frequency of offer (how often is the module offered?) Duration of module 1 semester Module Components/Types of courses (lecture, practical course, lab. Exercise: 1 h per week tutorial, exercise, seminar, internship,) ECTS credits 4 CP Work load: - In-class studying - Independent studying (incl. preparations for examination) Content - Newtonian and Relativistic hydrodynamics Radiation hydrodynamics - Hyperbolic PDEs - Finite volume methods - Riemann problem and solvers - Conservative finite-differencing - Limiters - Galerking methods Intended learning outcomes This course covers the development of numerical techniques required to solve the nonlinear equations that arise in the study of Fluid Dynamics. It also covers the analytical background that governs the solutions of these equations. By the end of the course the students will have learned the techniques required to writ numerical codes to solve problems in fluid dynamics and relativistic hydrodynamics Pererequisites for admission to the module examination Requirements for awarding credit Written examination (100%)	Modul PAFMT301 Topics of C	Current Research: Gravitation- and Quantum Theory IV
Module title (English) Person responsible for the module Recommended or expected prior knowledge Recommended or expected prior knowledge Type of module (compulsory module, required elective module, elective module) Recommended or expected prior knowledge Type of module (compulsory module, and Quantum Theory' 528 M.Sc. Physics, Required elective module specialization "Gravitation and Quantum Theory' 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization" Frequency of offer (how often is the module offered?) Duration of module 1 semester Module Components/Types of courses (lecture, practical course, lab, Exercise: 1 h per week courses (lecture, practical course, lab, Exercise: 1 h per week tutorial, exercise, seminar, internship,) ECTS credits 4 CP Work load: - In-class studying - Independent studying - Indepen	Module code	PAFMT301
Person responsible for the module Recommended or expected prior knowledge Type of module (compulsory module, required elective module, elective module, elective module, subject area "specialization" Frequency of offer (how often is the module offered?) Duration of module Module Components/Types of courses (lecture, practical course, lab, Exercise: 1 h per week tutorial, exercise, seminar, internship,) ECTS credits 4 CP Work load: Inclass studying Inclependent studying (incl. preparations for examination) Content Newtonian and Relativistic hydrodynamics Radiation hydrodynamics Internded learning outcomes This course covers the development of numerical techniques required to solve the nonlinear equations that arise in the study of Fluid Dynamics. It also covers the analytical background that governs the solutions of these equations. By the end of the course the studynamics of these equations. By the end of the course the study studynamics of these equations. By the end of the course the study studynamics of these equations. By the end of the course the study studynamics of these equations of the solutions of these equations. By the end of the course the studynamics of these equations. By the end of the course the studynamics of these equations. By the end of the course the studynamics of these equations. By the end of the course the studynamics of these equations. By the end of the course the studynamics of these equations of these equations. By the end of the course the studynamics of these equations. By the end of the course the studynamics of these equations of these equations of these equations. By the end of the course the studynamics of these equations of the summerical codes to solve problems in fluid dynamics and relativistic hydrodynamics. Prerequisites for admission to the module examination Requirements for awarding credit points (type of examination) The form of the exam will be announced at the beginning of the semester.	Module title (German)	Themen der aktuellen Forschung: Gravitations- und Quantentheorie IV
Recommended or expected prior knowledge Type of module (compulsory module, 128 M.Sc. Physics, Required elective module specialization "Gravitation and Quantum Theory" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization" Frequency of offer (how often is the module offered?) Duration of module 1 semester Module Components/Types of courses (lecture, practical course, lab, Exercise: 1 h per week tutorial, exercise, seminar, internship,) ECTS credits 4 CP Work load: 1-In-class studying 1-In-class studying 1-In-class studying 1-In-class studying 1-In-class studying 1-In-class trudying (incl. preparations for examination) Content 1 Newtonian and Relativistic hydrodynamics Radiation hydrodynamics 1-Hyperbolic PDEs 1-Finite volume methods 1-Riemann problem and solvers 1-Conservative finite-differencing 1-Limiters 1-Galerking methods Intended learning outcomes This course covers the development of numerical techniques required to solve the nonlinear equations that arise in the study of Fluid Dynamics. It also covers the analytical background that governs the solutions of these equations. By the end of the course the students will have learned the techniques required to write under the study of Fluid Dynamics. It also covers the analytical background that governs the solutions of these equations. By the end of the course the students will have learned the techniques required to write under the study of Fluid Dynamics and relativistic hydrodynamics Prerequisites for admission to the module examination None Written examination (100%) The form of the exam will be announced at the beginning of the semester.	Module title (English)	Topics of Current Research: Gravitation- and Quantum Theory IV
Type of module (compulsory module, required elective module, subject area "specialization"	Person responsible for the module	Prof. Dr. S. Bernuzzi
required elective module, elective module) and Quantum Theory" 528 M.Sc. Quantum Science and Technology, required elective module, subject area "specialization" Frequency of offer (how often is the module offered?) Duration of module 1 semester Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,) ECTS credits 4 CP Work load: - In-class studying - Independent studying (incl. preparations for examination) Content - Newtonian and Relativistic hydrodynamics Radiation hydrodynamics - Hyperbolic PDEs - Finite volume methods - Riemann problem and solvers - Conservative finite-differencing - Limiters - Galerking methods Intended learning outcomes This course covers the development of numerical techniques required to solve the nonlinear equations that arise in the study of Fluid Dynamics. It also covers the analytical background that governs the solutions of these equations. By the end or the course the students will have learned the techniques required to wrinumerical codes to solve problems in fluid dynamics and relativistic hydrodynamics Prerequisites for admission to the module examination Requirements for awarding credit points (type of examination) Written examination (100%) The form of the exam will be announced at the beginning of the semester.	Recommended or expected prior knowledge	Module General Relativity PAFMT001 or equivalent
module offered?) Duration of module 1 semester Module Components/Types of courses (lecture, practical course, lab, Exercise: 1 h per week tutorial, exercise, seminar, internship) ECTS credits 4 CP Work load: 1-1n-class studying 1-1ndependent studying (incl. preparations for examination) Content Newtonian and Relativistic hydrodynamics Radiation hydrodynamics Hyperbolic PDEs Finite volume methods Riemann problem and solvers Conservative finite-differencing Limiters Galerking methods Intended learning outcomes This course covers the development of numerical techniques required to solve the nonlinear equations that arise in the study of Fluid Dynamics. It also covers the analytical background that governs the solutions of these equations. By the end of the course the students will have learned the techniques required to writ numerical codes to solve problems in fluid dynamics and relativistic hydrodynamics Prerequisites for admission to the module examination Requirements for awarding credit points (type of examination) Written examination (100%) The form of the exam will be announced at the beginning of the semester.	Type of module (compulsory module, required elective module, elective module)	and Quantum Theory" 528 M.Sc. Quantum Science and Technology, required elective module,
Module Components/Types of courses (lecture, practical course, lab, Exercise: 1 h per week tutorial, exercise, seminar, internship,) ECTS credits 4 CP Work load: 120 h 45 h 75 h (Inclass studying 45 h 75 h (Incl. preparations for examination) Content Newtonian and Relativistic hydrodynamics Radiation hydrodynamics + Hyperbolic PDEs + Finite volume methods + Riemann problem and solvers + Conservative finite-differencing + Limiters + Galerking methods Intended learning outcomes This course covers the development of numerical techniques required to solve the nonlinear equations that arise in the study of Fluid Dynamics. It also covers the analytical background that governs the solutions of these equations. By the end of the course the students will have learned the techniques required to writnumerical codes to solve problems in fluid dynamics and relativistic hydrodynamics Prerequisites for admission to the module examination Requirements for awarding credit points (type of examination) Written examination (100%) The form of the exam will be announced at the beginning of the semester.	Frequency of offer (how often is the module offered?)	Every second semester (beginning in summer semester)
courses (lecture, practical course, lab, Exercise: 1 h per week tutorial, exercise, seminar, internship,) ECTS credits 4 CP Work load: 120 h - In-class studying 75 h (incl. preparations for examination) Content Newtonian and Relativistic hydrodynamics Radiation hydrodynamics + Hyperbolic PDEs - Finite volume methods + Riemann problem and solvers - Conservative finite-differencing + Limiters - Galerking methods Intended learning outcomes This course covers the development of numerical techniques required to solve the nonlinear equations that arise in the study of Fluid Dynamics. It also covers the analytical background that governs the solutions of these equations. By the end of the course the students will have learned the techniques required to write numerical codes to solve problems in fluid dynamics and relativistic hydrodynamics Prerequisites for admission to the module examination Requirements for awarding credit points (type of examination) Written examination (100%) The form of the exam will be announced at the beginning of the semester.	Duration of module	1 semester
Work load: - In-class studying - Independent studying (incl. preparations for examination) Content - Newtonian and Relativistic hydrodynamics Radiation hydrodynamics - Hyperbolic PDEs - Finite volume methods - Riemann problem and solvers - Conservative finite-differencing - Limiters - Galerking methods Intended learning outcomes This course covers the development of numerical techniques required to solve the nonlinear equations that arise in the study of Fluid Dynamics. It also covers the analytical background that governs the solutions of these equations. By the end of the course the students will have learned the techniques required to write numerical codes to solve problems in fluid dynamics and relativistic hydrodynamics Prerequisites for admission to the module examination Requirements for awarding credit points (type of examination) Written examination (100%) The form of the exam will be announced at the beginning of the semester.	tutorial, exercise, seminar, internship,	
- Inclass studying	ECTS credits	4 CP
Hyperbolic PDEs Finite volume methods Riemann problem and solvers Conservative finite-differencing Limiters Galerking methods This course covers the development of numerical techniques required to solve the nonlinear equations that arise in the study of Fluid Dynamics. It also covers the analytical background that governs the solutions of these equations. By the end of the course the students will have learned the techniques required to write numerical codes to solve problems in fluid dynamics and relativistic hydrodynamics Prerequisites for admission to the module examination Requirements for awarding credit points (type of examination) Written examination (100%) The form of the exam will be announced at the beginning of the semester.	Work load: - In-class studying - Independent studying (incl. preparations for examination)	45 h
solve the nonlinear equations that arise in the study of Fluid Dynamics. It also covers the analytical background that governs the solutions of these equations. By the end of the course the students will have learned the techniques required to write numerical codes to solve problems in fluid dynamics and relativistic hydrodynamics Prerequisites for admission to the module examination Requirements for awarding credit points (type of examination) Written examination (100%) The form of the exam will be announced at the beginning of the semester.	Content	 Hyperbolic PDEs Finite volume methods Riemann problem and solvers Conservative finite-differencing Limiters
module examination Requirements for awarding credit points (type of examination) The form of the exam will be announced at the beginning of the semester.	Intended learning outcomes	that arise in the study of Fluid Dynamics. It also covers the analytical background that governs the solutions of these equations. By the end of the course the students will have learned the techniques required to write numerical codes to solve problems in fluid dynamics and relativistic
points (type of examination) The form of the exam will be announced at the beginning of the semester.	Prerequisites for admission to the module examination	None
Language of instruction English	Requirements for awarding credit points (type of examination)	The form of the exam will be announced at the beginning of the
	Language of instruction	English

generated 27.10.2025 Page 105 of 110

Page 106 of 110 generated 27.10.2025

Modul PAFMQ099 Master the	SIS
Module code	PAFMQ099
Module title (German)	Master thesis
Module title (English)	Master thesis
Person responsible for the module	PD Dr. F. Setzpfandt
Prerequisites for admission to the module	Completion of module Research Lab, 72 ECTS according to the Studyand Examination Regulations
Prerequisite for what other modules	
Type of module (compulsory module, required elective module, elective module)	528 M.Sc. Quantum Science and Technology, compulsory module
Frequency of offer (how often is the module offered?)	Every semester
Duration of module	1 semester
Module Components/Types of courses (lecture, practical course, lab, tutorial, exercise, seminar, internship,)	Practical course / 900 h Depending on the topic, the workload should be distributed approximately as: • 225 h introduction to research topic (literature study,) • 450 h research work (in the lab for experimental topics, at computer, etc. for theoretical topics) • 200 h preparation of the final report 25 h presentation of final results and preparation for this
ECTS credits	30 CP
Work load: - In-class studying - Independent studying (incl. preparations for examination)	900 h 0 h 900 h
Content	Internship in a research laboratory
Intended learning outcomes	 Carrying out advanced scientific work together with a research team Preparation of the workflow to obtain researchresults Analysis of research results Preparation of a written scientific report (Master Thesis) Presentation of results in an oral presentation
Requirements for awarding credit points (type of examination)	The mark consists of a written report – Master's Thesis (66%), presentation (33%) The Master's Thesis should contain approximately 40-60 pages. The results of the Master's Thesis are presented by the candidate in a 20-30minute talk, and then discussed. The final grade is determined according to the Rules of Examination (in German: "Prüfungsordnung").
Recommended reading	specifically defined by the instructor

generated 27.10.2025 Page 107 of 110

Page 108 of 110 generated 27.10.2025

Page 109 of 110 Description of Module

Abbrevations:

IL Inaugural lecture WG Working group AM Advanced module Exh Exhibition BM Basic module BzPS Begleitveranstaltung zum Praxissemester C Consulting To Tour M Meeting Blo Blockage BC Block course DV Slide show IN Introductory session RS Registrations EC Exam course EX Excursion Exp Experiment/survey FE Celebration/festivity MS Movie screening FEx Field exercise BC Basic course MaS Main seminar MS/ Main seminar/block course BC Information session IDS/E Interdisciplinary main seminar/ exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/ C/I Colloquium/practical work CS Conference/symposium kV Kulturelle Veranstaltung	Abbrevations of lectures		
AM Advanced module Exh Exhibition BM Basic module BzPS Begleitveranstaltung zum Praxissemester C Consulting To Tour M Meeting Blo Blockage BC Block course DV Slide show IN Introductory session RS Registrations EC Exam course EX Excursion Exp Experiment/survey FE Celebration/festivity MS Movie screening FEx Field exercise BC Basic course MaS Main seminar MS/ Main seminar MS/ Main seminar/block course BC Inf Information session IDS/E Interdisciplinary main seminar/ exercise E Exam KS/ Klausur/Prüfung C Colloquium C/I Colloquium/practical work CS Conference/symposium	IL	Inaugural lecture	
Exh Exhibition BM Basic module BzPS Begleitveranstaltung zum Praxissemester C Consulting To Tour M Meeting Blo Blockage BC Block course DV Slide show IN Introductory session RS Registrations EC Exam course EX Excursion Exp Experiment/survey FE Celebration/festivity MS Movie screening FEx Field exercise BC Basic course MaS Main seminar MS/ Main seminar MS/ Main seminar/exercise Ex Inf Information session IDS/E Interdisciplinary main seminar/ exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	WG	Working group	
BM Basic module BzPS Begleitveranstaltung zum Praxissemester C Consulting To Tour M Meeting Blo Blockage BC Block course DV Slide show IN Introductory session RS Registrations EC Exam course EX Excursion Exp Experiment/survey FE Celebration/festivity MS Movie screening FEx Field exercise BC Basic course MaS Main seminar MS/ Main seminar/block course BC Information session IDS/E Interdisciplinary main seminar/ exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	AM	Advanced module	
BzPS Begleitveranstaltung zum Praxissemester C Consulting To Tour M Meeting Blo Blockage BC Block course DV Slide show IN Introductory session RS Registrations EC Exam course EX Excursion Exp Experiment/survey FE Celebration/festivity MS Movie screening FEx Field exercise BC Basic course MaS Main seminar MS/ Main seminar/block course BC Mas/ Main seminar/exercise Ex Inf Information session IDS/E Interdisciplinary main seminar/exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	Exh	Exhibition	
Praxissemester C Consulting To Tour M Meeting Blo Blockage BC Block course DV Slide show IN Introductory session RS Registrations EC Exam course EX Excursion Exp Experiment/survey FE Celebration/festivity MS Movie screening FEx Field exercise BC Basic course MaS Main seminar MS/ Main seminar/block course BC MaS/ Main seminar/exercise Ex Inf Information session IDS/E Interdisciplinary main seminar/exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	ВМ	Basic module	
To Tour M Meeting Blo Blockage BC Block course DV Slide show IN Introductory session RS Registrations EC Exam course EX Excursion Exp Experiment/survey FE Celebration/festivity MS Movie screening FEx Field exercise BC Basic course MaS Main seminar MS/ Main seminar/block course BC MaS/ Main seminar/exercise Ex Inf Information session IDS/E Interdisciplinary main seminar/exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	BzPS		
M Meeting Blo Blockage BC Block course DV Slide show IN Introductory session RS Registrations EC Exam course EX Excursion Exp Experiment/survey FE Celebration/festivity MS Movie screening FEx Field exercise BC Basic course MaS Main seminar MS/ Main seminar/block course BC Mas/ Main seminar/exercise Ex Inf Information session IDS/E Interdisciplinary main seminar/exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	C	Consulting	
Blo Blockage BC Block course DV Slide show IN Introductory session RS Registrations EC Exam course EX Excursion Exp Experiment/survey FE Celebration/festivity MS Movie screening FEX Field exercise BC Basic course MaS Main seminar MS/ Main seminar/block course BC MaS/ Main seminar/exercise Ex Inf Information session IDS/E Interdisciplinary main seminar/exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	То	Tour	
BC Block course DV Slide show IN Introductory session RS Registrations EC Exam course EX Excursion Exp Experiment/survey FE Celebration/festivity MS Movie screening FEx Field exercise BC Basic course MaS Main seminar MS/ Main seminar/block course BC Information session IDS/E Interdisciplinary main seminar/exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	M	Meeting	
DV Slide show IN Introductory session RS Registrations EC Exam course EX Excursion Exp Experiment/survey FE Celebration/festivity MS Movie screening FEX Field exercise BC Basic course MaS Main seminar MS/ Main seminar/block course BC MaS/ Ex Inf Information session IDS/E Interdisciplinary main seminar/exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	Blo	Blockage	
IN Introductory session RS Registrations EC Exam course EX Excursion Exp Experiment/survey FE Celebration/festivity MS Movie screening FEx Field exercise BC Basic course MaS Main seminar MS/ Main seminar/block course BC MaS/ Main seminar/exercise Ex Inf Information session IDS/E Interdisciplinary main seminar/exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	BC	Block course	
RS Registrations EC Exam course EX Excursion Exp Experiment/survey FE Celebration/festivity MS Movie screening FEx Field exercise BC Basic course MaS Main seminar MS/ Main seminar/block course BC Inf Information session IDS/E Interdisciplinary main seminar/exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	DV	Slide show	
EC Exam course EX Excursion Exp Experiment/survey FE Celebration/festivity MS Movie screening FEx Field exercise BC Basic course MaS Main seminar MS/ Main seminar/block course BC Inf Information session IDS/E Interdisciplinary main seminar/exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	IN	Introductory session	
EX Excursion Exp Experiment/survey FE Celebration/festivity MS Movie screening FEx Field exercise BC Basic course MaS Main seminar MS/ Main seminar/block course BC Information session IDS/E Interdisciplinary main seminar/exercise Ex Exam KS/ Klausur/Prüfung PR Colloquium C/I Colloquium/practical work CS Conference/symposium	RS	Registrations	
Exp Experiment/survey FE Celebration/festivity MS Movie screening FEx Field exercise BC Basic course MaS Main seminar MS/ Main seminar/block course BC MaS/ Main seminar/exercise Ex Inf Information session IDS/E Interdisciplinary main seminar/exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	EC	Exam course	
FE Celebration/festivity MS Movie screening FEX Field exercise BC Basic course MaS Main seminar MS/ Main seminar/block course BC MaS/ Main seminar/exercise Ex Inf Information session IDS/E Interdisciplinary main seminar/exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	EX	Excursion	
MS Movie screening FEx Field exercise BC Basic course MaS Main seminar MS/ Main seminar/block course BC MaS/ Main seminar/exercise Ex Inf Information session IDS/E Interdisciplinary main seminar/exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	Ехр	Experiment/survey	
FEx Field exercise BC Basic course MaS Main seminar MS/ Main seminar/block course BC MaS/ Main seminar/exercise Ex Inf Information session IDS/E Interdisciplinary main seminar/exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	FE	Celebration/festivity	
BC Basic course MaS Main seminar MS/ Main seminar/block course BC MaS/ Main seminar/exercise Ex Inf Information session IDS/E Interdisciplinary main seminar/exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	MS	Movie screening	
MaS Main seminar MS/ Main seminar/block course BC MaS/ Main seminar/exercise Ex Inf Information session IDS/E Interdisciplinary main seminar/exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	FEx	Field exercise	
MS/ BC MaS/ Main seminar/block course Ex Inf Information session IDS/E Interdisciplinary main seminar/ exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	BC	Basic course	
BC MaS/ Main seminar/exercise Ex Inf Information session IDS/E Interdisciplinary main seminar/exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	MaS	Main seminar	
MaS/ Main seminar/exercise Ex Inf Information session IDS/E Interdisciplinary main seminar/exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium		Main seminar/block course	
Ex Inf Information session IDS/E Interdisciplinary main seminar/ exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium			
IDS/E Interdisciplinary main seminar/ exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	_	Main seminar/exercise	
exercise E Exam KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	Inf	Information session	
KS/ Klausur/Prüfung PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	IDS/E		
PR C Colloquium C/I Colloquium/practical work CS Conference/symposium	E	Exam	
C/I Colloquium/practical work CS Conference/symposium		Klausur/Prüfung	
CS Conference/symposium	C	Colloquium	
	C/I	Colloquium/practical work	
kV Kulturelle Veranstaltung	CS	Conference/symposium	
	kV	Kulturelle Veranstaltung	

Abbrevations of lectures

<u>Abbrevati</u>	ons of lectures
Cu	Course
Co	Course
Lag	Lagerung
TRP	Training research project
RC	Reading course
М	Module
ME	Musical event
AS	Advanced seminar
OnS	Online seminar
OnL	Online lecture
P	Practical work
I/S	Practical work/seminar
РМ	Practice module
Sa	Sample
PJ	Project
PPD	Propaedeutic
PS	Proseminar
E/T	Exam/test
EPr	Exam preparation
CSA	Cross-sectional area
RE	Revision course
LS	Lecture Series
TC	Training course
S	Seminar
S/E	Seminar/Excursion
S/E	Seminar/Exercise
ST	Service time
SI	Conference
SuSch	Summer school
MISC	Miscellaneous
OE	Other event
LC	Language course
Con	Convention
TT	Teleteaching
MN	Meeting
Tu	Tutorial
T	Tutorial
E	Exercise
E/BC	Exercise/block course
E	Exercises

Page 109 of 110 generated 27.10.2025

Page 110 of 110 Description of Module

Abbrevations of lectures

E/I	Exercise/interdisciplinary
E/I	Exercise/practical work
E/T	Exercise/tutorial
Conf	Conference
ViCo	Video conference
L	Lecture
L/C	Lecture with colloquium
L/I	Lecture/practical work
L/S	Lecture/seminar
L/E	Lecture/exercise
Sp	Speech
TK	Talk
0S	Optional seminar
OL	Optional lecture
Tr	Training
Wo	Workshop
WOS	Workshop
CAC	Certificate award ceremony

Other Abbrevations

Other Apprevations	
Anm	Anmerkung
ASQ	Allgemeine Schlüsselqualifikationen
AT	Altes Testament
E	Essay
FSQ	Fachspezifische Schlüsselqualifikationen
FSV	Fakultät für Sozial- und Verhaltenswissenschaften
GK	Grundkurs
IAW	Institut für Altertumswissenschaften
LP	Leistungspunkte
NT	Neues Testament
SQ	Schlüsselqualifikationen
SS	Sommersemester
SWS	Semesterwochenstunden
TE	Teilnahme
TP	Thesenpublikation
ThULB	Thüringer Universitäts- und Landesbibliothek
VVZ	Vorlesungsverzeichnis
WS	Wintersemester

Page 110 of 110 generated 27.10.2025